Journal of Materials Science

, Volume 43, Issue 23–24, pp 7403–7408 | Cite as

Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure

  • Byungmin AhnEmail author
  • Enrique J. Lavernia
  • Steven R. Nutt
Ultrafine-Grained Materials


The tensile properties and deformation response of an ultrafine-grained (UFG) Al–Mg alloy with bimodal grain structure were investigated using a micro-straining unit and a strain mapping technique. Atomized Al 5083 powder was ball-milled in liquid N2 to obtain a nanocrystalline (NC) structure, then blended with 50 wt.% unmilled coarse-grained (CG) powder, and consolidated to produce a bimodal grain structure. The blended powder was hot vacuum degassed to remove residual contaminants, consolidated by cold isostatic pressing (CIP), and then quasi-isostatic (QI) forged twice. The resultant material consisted of a UFG matrix and CG regions. The dynamic response during tensile deformation was observed using a light microscope, and the surface displacements were mapped and visualized using a digital image correlation (DIC) technique. The DIC results showed inhomogeneous strain between the UFG and CG regions after yielding, and the strain was localized primarily in the CG regions. Strain hardening in the CG regions accompanied the localization and was confirmed by variations in Vickers hardness.


Digital Image Correlation Cold Isostatic Pressing Bimodal Microstructure Primary Consolidation Cryomilled Powder 



Financial support was provided by the Office of Naval Research under contract N00014-03-C-0163. The authors gratefully acknowledge Prof. Rahul Mitra (Indian Institute of Technology, India) for his professional advice and Correlated Solution, Inc. for providing a trial license of the VIC-2D software.


  1. 1.
    Gleiter H (1989) Prog Mater Sci 33:223. doi: CrossRefGoogle Scholar
  2. 2.
    Weertman JR, Averback RS (1996) In: Edelstein AS, Cammarata RC (eds) Nanomaterials: synthesis, properties and applications. Institute of Physics Publishing, Bristol, p 323Google Scholar
  3. 3.
    Newbery AP, Han BQ, Lavernia EJ, Suryanarayana C, Christodoulou JA (2007) In: Groza JR, Shackelford JF, Lavernia EJ, Powers MT (eds) Materials processing handbook. CRC Press, Boca Raton, FA, p 13–1Google Scholar
  4. 4.
    Hall EQ (1951) Proc Soc Lond B64:747Google Scholar
  5. 5.
    Petch NJ (1953) J Iron Steel Inst 174:25Google Scholar
  6. 6.
    Suryanarayana C (2001) Prog Mater Sci 46:1. doi: CrossRefGoogle Scholar
  7. 7.
    Witkin DB, Lavernia EJ (2006) Prog Mater Sci 51:1. doi: CrossRefGoogle Scholar
  8. 8.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  9. 9.
    Sanders PG, Fougere GE, Thompson LJ, Eastman JA, Weertman JR (1997) Nanostruct Mater 8:243. doi: CrossRefGoogle Scholar
  10. 10.
    Erb U (1995) Nanostruct Mater 6:533. doi: CrossRefGoogle Scholar
  11. 11.
    Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912. doi: CrossRefGoogle Scholar
  12. 12.
    He G, Eckert J, Loser W, Schultz L (2002) Nat Mater 2:33. doi: CrossRefGoogle Scholar
  13. 13.
    Tellkamp VL, Melmed A, Lavernia EJ (2001) Metall Mater Trans 32A:2335. doi: CrossRefGoogle Scholar
  14. 14.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251. doi: CrossRefGoogle Scholar
  15. 15.
    Han BQ, Lee Z, Witkin D, Nutt S, Lavernia EJ (2005) Metall Mater Trans 36A:957. doi: CrossRefGoogle Scholar
  16. 16.
    Lee Z, Witkin DB, Radmilovic V, Lavernia EJ, Nutt SR (2005) Mater Sci Eng A 410–411:462. doi: CrossRefGoogle Scholar
  17. 17.
    Chan HW (1988) Mater Des 9:355CrossRefGoogle Scholar
  18. 18.
    Newbery AP, Ahn B, Pao P, Nutt SR, Lavernia EJ (2007) Adv Mater Res 29–30:21CrossRefGoogle Scholar
  19. 19.
    Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR (1986) Image Vis Comput 4(3):143. doi: CrossRefGoogle Scholar
  20. 20.
    Ahn B, Newbery AP, Lavernia EJ, Nutt SR (2007) Mater Sci Eng A 463:61. doi: CrossRefGoogle Scholar
  21. 21.
    Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhua YT (2003) Appl Phys Lett 83(4):632. doi: CrossRefGoogle Scholar
  22. 22.
    Han BQ, Lavernia EJ (2005) Adv Eng Mater 7(6):457. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Byungmin Ahn
    • 1
    Email author
  • Enrique J. Lavernia
    • 2
  • Steven R. Nutt
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUnited States
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUnited States

Personalised recommendations