Journal of Materials Science

, Volume 43, Issue 18, pp 6099–6104 | Cite as

Thermal analysis and annealing temperature dependence of electrical properties in Sn10Sb20Se70 glassy semiconductor

  • Praveen Kumar
  • R. ThangarajEmail author
  • T. Stephen Sathiaraj


The melt-quenched Sn10Sb20Se70 sample in the bulk form was used to prepare films on well-cleaned glass substrates by thermal evaporation method. The activation energy for glass transition (apparent) and crystallization has been analyzed by using the Kissinger formulation. The X-ray diffraction study shows the crystallization of Sb2Se3 phase in the major proportion as compared to the SnSe2 phase. The SEM images film of the show the appearance of spherical globules upon annealing below the glass transition temperature. The effect of annealing temperature on the electrical and optical properties has been studied. A linear fit between ΔE and Eo is observed, indicating the validity of Meyer–Neldel rule with the change in the annealing temperature.


Glass Transition Temperature Chalcogenide Glass SnSe2 Annealed Film Pristine Sample 



The authors wish to thank Mr. Jagtar Singh, Sophisticated Analytical Instrumentation Facility (SAIF), Punjab University, Chandigarh, and Mr. Jagdish Singh, Scientific Officer, Institute Instrumentation Center, IIT, Roorkee, for their timely help in the XRD and DSC studies, respectively.


  1. 1.
    Wang F, Boolchand P (2004) In: Lucovsky G, Popescu M (eds) Non-crystalline materials for optoelectronics, vol 1. INOE, RomaniaGoogle Scholar
  2. 2.
    Wang Z, Tu C, Li Y, Chen Q (1995) J Non-Cryst Solids 191:132. doi: CrossRefGoogle Scholar
  3. 3.
    Klocek P, Roth M, Rock RD (1987) Opt Eng 26:88CrossRefGoogle Scholar
  4. 4.
    Kumar P, Thangaraj R (2006) J Non-Cryst Solids 352:2288. doi: CrossRefGoogle Scholar
  5. 5.
    Kumar P, Bindra KS, Suri N, Thangaraj R (2006) J Phys D Appl Phys 39:642. doi: CrossRefGoogle Scholar
  6. 6.
    Mehta N, Agarwal P, Kumar A (2005) Eur Phys J Appl Phys 31:153. doi: CrossRefGoogle Scholar
  7. 7.
    Lasocka M (1976) Mater Sci Eng 23:173. doi: CrossRefGoogle Scholar
  8. 8.
    Tichy L, Rysava N, Trisk A, Ticha H, Klikorka J (1984) Sol Stat Commun 49:903. doi: CrossRefGoogle Scholar
  9. 9.
    Kissinger HE (1956) J Res Natl Bur Stand 57:217CrossRefGoogle Scholar
  10. 10.
    Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  11. 11.
    Mohamed SH, Kappertz O, Niemeier T, Drese R, Wakkad MM, Wuttig M (2004) Thin Solid Films 468:48. doi: CrossRefGoogle Scholar
  12. 12.
    Shimakawa K, Abdel-Waheb F (1997) Appl Phys Lett 70:652. doi: CrossRefGoogle Scholar
  13. 13.
    Yalon A, Movaghar B, Crandall RS (2006) Rep Prog Phys 69:1145. doi: CrossRefGoogle Scholar
  14. 14.
    Roberts GG (1971) J Phys C Solid State 4:3167. doi: CrossRefGoogle Scholar
  15. 15.
    Kuzukawa Y, Ganjoo A, Shimakawa K (1998) J Non-Cryst Solids 227–230:715. doi: CrossRefGoogle Scholar
  16. 16.
    El Zahed H (2001) Physica B (Amsterdam) 307:95. doi: CrossRefGoogle Scholar
  17. 17.
    Mohamed SH, Wakkad MM, Ahmed AM, Diab AK (2006) Eur Phys J Appl Phys 34:165. doi: CrossRefGoogle Scholar
  18. 18.
    Moharram AH (2004) Appl Phys A 66:515. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Praveen Kumar
    • 1
  • R. Thangaraj
    • 1
    Email author
  • T. Stephen Sathiaraj
    • 2
  1. 1.Semiconductors Laboratory, Department of Applied PhysicsGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of PhysicsUniversity of BotswanaGaboroneBotswana

Personalised recommendations