Journal of Materials Science

, Volume 43, Issue 22, pp 7219–7224 | Cite as

Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation

  • Ammar ElsanousiEmail author
  • Jun Zhang
  • H. M. H. Fadlalla
  • Feng Zhang
  • Hui Wang
  • Xiaoxia Ding
  • Zhixin Huang
  • Chengcun TangEmail author


The effect of ammonium fluoride (NH4F) concentration on the dimensions (length, diameter, and wall thickness) of the self-organized nanotube arrays has been investigated. Results show that varying the concentration of NH4F exerts a strong effect on changing the dimensions of the as-grown nanotube arrays. The length of the nanotube arrays increases gradually by increasing the concentration up to a maximum length at a concentration of 1.00 wt%, after which the length decreases slightly with the increase in NH4F concentration. It was also observed that the diameter and wall thickness of the nanotube arrays vary with the change in concentration of NH4F, where the diameter was found to alter between 80 and 140 nm, and the wall thickness decreases by increasing the NH4F concentration. These results indicate that it is possible to entirely control the dimensions of the nanotube arrays, by tailoring the concentration of NH4F besides the anodization time and voltage.


TiO2 Aqueous Electrolyte NH4F Ammonium Fluoride Anodic Oxide Film 



The authors gratefully acknowledge the financial support for this work from the Fok Fing Tong Education Foundation (Grant No. 91050), and the National Natural Science Foundation of China (Grant No. 50202007).


  1. 1.
    Park S, Lim JH, Chung SW, Mirkin CA (2004) Science 303:348. doi: CrossRefGoogle Scholar
  2. 2.
    Sieber I, Hildebrand H, Friedrich A, Schmuki P (2006) J Electroceram 16:35. doi: CrossRefGoogle Scholar
  3. 3.
    Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Science 296:2198. doi: CrossRefGoogle Scholar
  4. 4.
    Munoz AG, Chen Q, Schmuki P (2007) J Solid State Electrochem 11:1077. doi: CrossRefGoogle Scholar
  5. 5.
    Munoz AG (2007) Electrochim Acta 52:4167. doi: CrossRefGoogle Scholar
  6. 6.
    Adachi M, Murata Y, Harada M, Yoshikawa Y (2000) Chem Lett 29:942. doi: CrossRefGoogle Scholar
  7. 7.
    Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) J Phys Chem B 107:6586. doi: CrossRefGoogle Scholar
  8. 8.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624. doi: CrossRefGoogle Scholar
  9. 9.
    Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) J Mater Res 19:628. doi: CrossRefGoogle Scholar
  10. 10.
    Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398. doi: CrossRefGoogle Scholar
  11. 11.
    Mor GK, Shankar K, Varghese OK, Grimes CA (2004) J Mater Res 19:2989. doi: CrossRefGoogle Scholar
  12. 12.
    Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Electrochemistry 70:418Google Scholar
  13. 13.
    Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) J Electrochem Soc 150:G488. doi: CrossRefGoogle Scholar
  14. 14.
    Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Nanotechnology 17:1. doi: CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Yuan Y, Fang Y, Liang L, Ding H, Shi G, Jin L (2007) J Electroanal Chem 610:179. doi: CrossRefGoogle Scholar
  16. 16.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Ancouturier M (1999) Surf Interface Anal 27:629. doi 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0CrossRefGoogle Scholar
  17. 17.
    Mor GK, Verghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:20011. doi: CrossRefGoogle Scholar
  18. 18.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331. doi: CrossRefGoogle Scholar
  19. 19.
    Cai Q, Paulose M, Varghese OK, Grimes CA (2005) J Mater Res 20:230. doi: CrossRefGoogle Scholar
  20. 20.
    Macak JM, Taveira LV, Tsuchiya H, Sirotna K, Macak J, Schmuki P (2006) J Electroceram 16:29. doi: CrossRefGoogle Scholar
  21. 21.
    Yoriya S, Paulose M, Varghese OK, Mor GK, Grimes CA (2007) J Phys Chem C 111:13770. doi: CrossRefGoogle Scholar
  22. 22.
    Xiao P, Garcia BB, Guo Q, Liu D, Cao G (2007) Electrochem Commun 9:2441. doi: CrossRefGoogle Scholar
  23. 23.
    Macak JM, Schmuki P (2006) Electrochim Acta 52:1258. doi: CrossRefGoogle Scholar
  24. 24.
    Bauer S, Kleber S, Schmuki P (2006) Electrochem Commun 8:1321. doi: CrossRefGoogle Scholar
  25. 25.
    Prida VM, Manova E, Vega V, Hernandez-Velez M, Aranda P, Pirota KR, Vazquez M, Ruiz-Hitzky E (2007) J Magn Magn Mater 316:110. doi: CrossRefGoogle Scholar
  26. 26.
    Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100. doi: CrossRefGoogle Scholar
  27. 27.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179. doi: CrossRefGoogle Scholar
  28. 28.
    Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Electrochem Commun 7:505. doi: CrossRefGoogle Scholar
  29. 29.
    Yang DJ, Kim HG, Cho SJ, Choi WY (2008) Mater Lett 62:775. doi: CrossRefGoogle Scholar
  30. 30.
    Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ammar Elsanousi
    • 1
    Email author
  • Jun Zhang
    • 1
  • H. M. H. Fadlalla
    • 1
  • Feng Zhang
    • 1
  • Hui Wang
    • 1
  • Xiaoxia Ding
    • 1
  • Zhixin Huang
    • 1
  • Chengcun Tang
    • 1
    Email author
  1. 1.College of Physical Science and TechnologyCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations