Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7225–7229 | Cite as

Spectral and directional emittance of alumina at 823 K

  • George TeodorescuEmail author
  • Peter D. Jones
Article

Abstract

Spectral–directional emittance measurements of aluminum oxide (99.5% pure), in air, were performed at 823 K using an apparatus comprised of a Fourier Transform Infrared (FTIR) spectrometer, a blackbody radiating cavity (hohlraum), and a sample holder which allows directional measurements. The data cover a wide spectral range between 2 and 25 μm, and a directional range from a surface normal to a 72° polar angle. The aluminum oxide sample used in the experiment had a nominal surface roughness of 1 μm determined by a profilometer. Directional emittance shows no departure from dielectric behavior.

Keywords

Directional Emittance Normal Emittance Wide Spectral Range Spectral Normal Emittance Blackbody Cavity 

References

  1. 1.
    Vader DT, Viskanta R, Incropera FP (1985) Rev Sci Instrum 57(1):87. doi: https://doi.org/10.1063/1.1139125 CrossRefGoogle Scholar
  2. 2.
    Folweiler RC (1962) USAF technical document report no. ASD-TDR-62-719. U.S. GPO, Washington, D.C., USAGoogle Scholar
  3. 3.
    Brun JF, De Sousa Meneses D, Echegut P (2003) In: Paper presented at 15th symposium of thermophysical properties, June, Boulder, CO, USAGoogle Scholar
  4. 4.
    Bigio L (1999) GE technical document report no. 99. CRD128, U.S. Research and DevelopmentGoogle Scholar
  5. 5.
    Randolph CP, Overholzer MJ (1913) Phys Rev 2:144. doi: https://doi.org/10.1103/PhysRev.2.144 CrossRefGoogle Scholar
  6. 6.
    Jones PD, Dorai-Raj DE, Mcleod DG (1996) J Therm Heat Trans 10(2):343. doi: https://doi.org/10.2514/3.793 CrossRefGoogle Scholar
  7. 7.
    Jones PD, Teodorescu G, Overfelt RA (2006) J Heat Transfer 128:382. doi: https://doi.org/10.1115/1.2165207 CrossRefGoogle Scholar
  8. 8.
    Teodorescu G, Jones PD, Overfelt RA, Guo B (2006) Int J Thermophys 27(2):554. doi: https://doi.org/10.1007/s10765-005-0009-y CrossRefGoogle Scholar
  9. 9.
    Incropera FP, Dewitt DP (2002) Fundamentals of heat and mass transfer, vol 5. Wiley, New YorkGoogle Scholar
  10. 10.
    Modest MF (2003) Radiative heat transfer, 2nd edn. Academic Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.275 Wilmore Laboratory, Materials Engineering ProgramAuburn UniversityAuburnUSA
  2. 2.270 Ross Hall, Mechanical Engineering DepartmentAuburn UniversityAuburnUSA

Personalised recommendations