Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6109–6115 | Cite as

Role of flux in the production process of red phosphors for white LEDs

  • Gwan-Hyoung Lee
  • Chulsoo Yoon
  • Shinhoo KangEmail author
Article

Abstract

Eu3+-doped potassium tungstate phosphor was synthesized by solid-state reactions. The as-produced phosphor was re-fired with a small amount of flux-like alkali carbonates and boron oxide. It was confirmed that the re-firing process containing a flux led to the uniform particle growth with smooth surface and improved Eu3+ distribution at the surface of particles, resulting in the enhanced red emission. The X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were used to determine the role of flux in the system.

Keywords

Emission Intensity B2O3 Luminescence Property Boron Oxide Surface Segregation 

Notes

Acknowledgement

This research was partially sponsored by the Samsung Electro-Mechanics Co. and by BK21 program of the ministry of Education, Republic of Korea (2005).

References

  1. 1.
    Nakamura S, Senoh M, Mukai T (1993) Appl Phys Lett 62:2390. doi: https://doi.org/10.1063/1.109374 CrossRefGoogle Scholar
  2. 2.
    Schubert EF, Kim JK (2005) Science 308:1274. doi: https://doi.org/10.1126/science.1108712 CrossRefGoogle Scholar
  3. 3.
    Feldmann C, Jüstel T, Ronda CR, Schmidt PJ (2003) Adv Funct Mater 13(7):511. doi: https://doi.org/10.1002/adfm.200301005 CrossRefGoogle Scholar
  4. 4.
    Yacobi BG, Holt DB (1990) Cathodoluminescence microscopy of inorganic solids, 1st edn. Plenum Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Abrams BL, Holloway PH (2004) Chem Rev 104(12):5783. doi: https://doi.org/10.1021/cr020351r CrossRefGoogle Scholar
  6. 6.
    Shionoya S, Yen WM (1999) Phosphor handbook. CRC Press, BostonGoogle Scholar
  7. 7.
    Holloway PH, Jones SL (1998) J Surf Anal 3:226Google Scholar
  8. 8.
    Kashiwakura Y, Kanehisa O (1989) Japan Patent 1-263188Google Scholar
  9. 9.
    Jones SL, Kumar D, Cho KG, Singh R, Holloway PH (1999) Displays 19:151. doi: https://doi.org/10.1016/S0141-9382(98)00045-6 CrossRefGoogle Scholar
  10. 10.
    Lee G-H, Kim T, Yoon C, Kang S (2008) J Lumin (in press)Google Scholar
  11. 11.
    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, New York, p 42CrossRefGoogle Scholar
  12. 12.
    Nag A, Kutty TRN (2003) J Alloy Compd 354:221CrossRefGoogle Scholar
  13. 13.
    Murata T, Tanoue T, Iwasaki M, Morinaga K, Hase T (2005) J Lumin 114:207. doi: https://doi.org/10.1016/j.jlumin.2005.01.003 CrossRefGoogle Scholar
  14. 14.
    Barr TL (1978) J Phys Chem 82:1801. doi: https://doi.org/10.1021/j100505a006 CrossRefGoogle Scholar
  15. 15.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Mullenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp., Eden PrairieGoogle Scholar
  16. 16.
    Atuchin VV, Kesler VG, Maklakova NY, Pokrovsky LD (2005) Solid State Commun 133:347. doi: https://doi.org/10.1016/j.ssc.2004.11.042 CrossRefGoogle Scholar
  17. 17.
    Lu DY, Sugano M, Sun XY, Su WH (2005) Appl Surf Sci 242:318. doi: https://doi.org/10.1016/j.apsusc.2004.08.032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Samsung Electro-Mechanics Co. Ltd.SuwonSouth Korea

Personalised recommendations