Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6122–6125 | Cite as

Effect of the introduction of vanadium pentaoxide in phospho-tellurite glasses containing gadolinium ions

  • S. RadaEmail author
  • M. Culea
  • M. Rada
  • E. Culea
Article

Abstract

A range of phospho-tellurite glasses containing gadolinium was prepared and infrared absorption spectra were measured. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd2O3 causes a higher extent of network polymerization as far as x ≤ 15 mol% because the conversion of [TeO4] to [TeO3] structural units is supported by the increase of metaphosphate structural groups. While for x between 20 and 30 mol% Gd2O3 show some drastic structural modifications which lead to the increase in the glass fragility. Thus the addition of V2O5 resulted in gradual depolymerization of the phosphate chains and formation of short phosphate units, which are linked to vanadium through P–O–V bonds. The formation of P–O–V bonds increases the cross-link between the phosphate chains and the bending mode of Te–O–Te or O–Te–O linkages.

Keywords

TeO2 Gd2O3 Metaphosphate Gadolinium Oxide Phosphate Chain 

References

  1. 1.
    Ehrt D, Seeber W (1991) J Non-Cryst Solids 129:19. doi: https://doi.org/10.1016/0022-3093(91)90076-I CrossRefGoogle Scholar
  2. 2.
    Weber MJ, Layne C, Saroyan R, Milan D (1976) Opt Commun 18:171. doi: https://doi.org/10.1016/0030-4018(76)90658-1 CrossRefGoogle Scholar
  3. 3.
    Federighi M, Massarek I, Trwoga PF (1993) IEEE Photon Technol Lett 5:227. doi: https://doi.org/10.1109/68.196013 CrossRefGoogle Scholar
  4. 4.
    Hattori K, Kitagawa T, Ohmori Y (1996) J Appl Phys 79:1238. doi: https://doi.org/10.1063/1.361017 CrossRefGoogle Scholar
  5. 5.
    Bouderbala M, Mohmoh H, Bahtat A, Bahtat M, Ouchetto M, Druetta M et al (1999) J Non-Cryst Solids 259:23. doi: https://doi.org/10.1016/S0022-3093(99)00535-9 CrossRefGoogle Scholar
  6. 6.
    Shaw CM, Shelby JE (1988) Phys Chem Glasses 29:87Google Scholar
  7. 7.
    Donald IW (1993) J Mater Sci 28:2841. doi: https://doi.org/10.1007/BF00354689 CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Brow RK, Arens CM, Yu X, Day DE (1994) Phys Chem Glasses 35:132Google Scholar
  10. 10.
    Weber MJ (1990) J Non-Cryst Solids 123:208. doi: https://doi.org/10.1016/0022-3093(90)90786-L CrossRefGoogle Scholar
  11. 11.
    Fuxi G (1991) Optical and spectroscopic properties of glass. Springer-Shanghai Scientific and Technical Publications, Shangai, p 69Google Scholar
  12. 12.
    Jiang S, Myers M, Peyghambarian N (2000) J Non-Cryst Solids 263:3Google Scholar
  13. 13.
    Ajithkumar G, Gupta PK, Jose G, Unnikrishnan NV (2000) J Non-Cryst Solids 275:93. doi: https://doi.org/10.1016/S0022-3093(00)00244-1 CrossRefGoogle Scholar
  14. 14.
    Sekiya T, Mochida N, Ogawa S (1994) J Non-Cryst Solids 176:105. doi: https://doi.org/10.1016/0022-3093(94)90067-1 CrossRefGoogle Scholar
  15. 15.
    Shaltout I, Tang Y, Braunstein R, Abu-Elazm AM (1995) J Phys Chem Solids 56:141. doi: https://doi.org/10.1016/0022-3697(94)00150-2 CrossRefGoogle Scholar
  16. 16.
    Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713. doi: https://doi.org/10.1007/s10853-008-2601-6 CrossRefGoogle Scholar
  17. 17.
    Anderson GW, Compton WD (1970) J Chem Phys 52:6166. doi: https://doi.org/10.1063/1.1672922 CrossRefGoogle Scholar
  18. 18.
    Janakirama Rao BHV (1965) J Am Ceram Soc 48:311. doi: https://doi.org/10.1111/j.1151-2916.1965.tb14748.x CrossRefGoogle Scholar
  19. 19.
    El-Mallawany R (1989) Infrared Phys 29(2–4):781. doi: https://doi.org/10.1016/0020-0891(89)90125-5 CrossRefGoogle Scholar
  20. 20.
    El-Zaidia MM, Ammar AA, El-Mallawany R (1985) Phys Stat Sol 91(A):637CrossRefGoogle Scholar
  21. 21.
    Culea E, Pop L, Simon V, Neumann M, Bratu I (2004) J Non-Cryst Solids 337:62. doi: https://doi.org/10.1016/j.jnoncrysol.2004.03.104 CrossRefGoogle Scholar
  22. 22.
    Pop L, Culea E, Bosca M, Neumann M, Muntean R, Pascuta P et al (2008) J Optoelectr Adv Mater 10(3):619Google Scholar
  23. 23.
    Rada S, Pascuta P, Bosca M, Culea M, Pop L, Culea E (2008) Vib Spectrosc. doi: https://doi.org/10.1016/j.vibspec.2007.12.005 CrossRefGoogle Scholar
  24. 24.
    Rada S, Culea E, Bosca M, Culea M, Muntean R, Pascuta P (2008) Vib Spectrosc. doi: https://doi.org/10.1016/j.vibspec.2008.04.001 CrossRefGoogle Scholar
  25. 25.
    Dimitriv Y, Dimitriv V, Arnaudov M, Topalov D (1983) J Non-Cryst Solids 57:147. doi: https://doi.org/10.1016/0022-3093(83)90417-9 CrossRefGoogle Scholar
  26. 26.
    Rada S, Culea M, Neumann M, Culea E (2008) Chem Phys Lett 460(1–3):196. doi: https://doi.org/10.1016/j.cplett.2008.05.088 CrossRefGoogle Scholar
  27. 27.
    Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424. doi: https://doi.org/10.1007/s10854-007-9359-5 CrossRefGoogle Scholar
  28. 28.
    Lambson EF, Saunders GA, Bridge B, El-Mallawany R (1984) J Non-Cryst Solids 69:117. doi: https://doi.org/10.1016/0022-3093(84)90128-5 CrossRefGoogle Scholar
  29. 29.
    Sammet M, Bruckner R (1987) Glastech Ber 60:55Google Scholar
  30. 30.
    Dayanad C, Bhikshamaiah G, Tyagaraju VJ, Salagram M, Krishnamurthy ASR (1996) J Mater Sci 31:1945. doi: https://doi.org/10.1007/BF00356615 CrossRefGoogle Scholar
  31. 31.
    Almieda RM, Mackenize JD (1980) J Non-Cryst Solids 40:535. doi: https://doi.org/10.1016/0022-3093(80)90128-3 CrossRefGoogle Scholar
  32. 32.
    Corbridge DEC, Lowe JE (1954) J Chem Soc Part I:493. doi: https://doi.org/10.1039/jr9540000493 CrossRefGoogle Scholar
  33. 33.
    Rulmont A, Cahay R, Liegois-Duyckaerts M, Tarte P (1991) Eur J Solid State Inorg Chem 28:207Google Scholar
  34. 34.
    Tananaev LV (1985) Atlas of infrared spectra of phosphates and condensed phosphates. Izv. Nauka, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Physics DepartmentTechnical UniversityCluj-NapocaRomania
  2. 2.Faculty of PhysicsBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations