Journal of Materials Science

, Volume 43, Issue 18, pp 6139–6143 | Cite as

Abnormal Hall–Petch behavior in nanocrystalline MgO ceramic

  • David Ehre
  • Rachman Chaim


Pure and dense nanocrystalline MgO with grain size ranging between 25 and 500 nm were prepared by hot-pressing. Vickers microhardness was found to increase with decrease in the grain size down to 130 nm, following the Hall–Petch relation. Further decrease in the grain size was followed by continuous decrease in microhardness. A composite model was used to describe the microhardness behavior in terms of plastic yield of the nanocrystalline grains accompanied by strain accommodation and nanocracking at the grain boundaries (gb’s). Good agreement between the experimental and the calculated values indicates that gb’s may have significant effect on strengthening and ductility of nanocrystalline-MgO ceramics in the nanometer size range. Critical grain size exists below which limited plastic deformation within the grains and nanocracking at gb’s enhance the brittleness of the ceramic.


Vickers Microhardness Lamella Spacing Plastic Relaxation Knoop Hardness Excess Free Volume 



The support of the Israel Ministry of Science through the grant no. 1090-1-00 is gratefully acknowledged.


  1. 1.
    Morgan PED, Scala E (1965) In: Kuczynski GC, Hooton NA, Gibbon CF (eds) Sintering and related phenomena. Breach Sci Pub, NYGoogle Scholar
  2. 2.
    Pampush R (1979) Ceramurgia Int 5:76CrossRefGoogle Scholar
  3. 3.
    Itatani K, Nomura M, Kishioka A, Kinoshita M (1986) J Mater Sci 21:1429. doi: CrossRefGoogle Scholar
  4. 4.
    Itatani K, Yasuda R, Howell FS, Kishioka A (1997) J Mater Sci 32:2977. doi: CrossRefGoogle Scholar
  5. 5.
    Vieira JM, Brook RJ (1984) J Am Ceram Soc 67:450CrossRefGoogle Scholar
  6. 6.
    Pampush R, Tomaszewski H, Haberko K (1975) Ceramurgia Int 1:81CrossRefGoogle Scholar
  7. 7.
    Wilshire B (1995) Br Ceram Trans 94:57Google Scholar
  8. 8.
    Ehre D, Gutmanas EY, Chaim R (2005) J Eur Ceram Soc 25:3579CrossRefGoogle Scholar
  9. 9.
    Chaim R, Shen Z, Nygren M (2004) J Mater Res 19:2527CrossRefGoogle Scholar
  10. 10.
    Rice RW, Wu CC, Borchelt F (1994) J Am Ceram Soc 77:2539CrossRefGoogle Scholar
  11. 11.
    Majumdar BS, Burns SJ (1987) J Mater Sci 22:1157. doi: CrossRefGoogle Scholar
  12. 12.
    Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scripta Metall 23:1679CrossRefGoogle Scholar
  13. 13.
    Jang JSC, Koch CC (1990) Scripta Metall Mater 24:1599CrossRefGoogle Scholar
  14. 14.
    Lu K, Wei WD, Wang JT (1990) Scripta Metall Mater 24:2319CrossRefGoogle Scholar
  15. 15.
    Gerstman VY, Hoffmann M, Gleiter H, Birringer R (1994) Acta Mater 42:3539CrossRefGoogle Scholar
  16. 16.
    Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955CrossRefGoogle Scholar
  17. 17.
    Lian J, Baudelet B (1993) Nanostruct Mater 2:415CrossRefGoogle Scholar
  18. 18.
    Wang N, Wang Z, Aust KT, Erb U (1995) Acta Metall Mater 43:519CrossRefGoogle Scholar
  19. 19.
    Masumura RA, Hazzeldine PM, Pande CS (1998) Acta Mater 46:4527CrossRefGoogle Scholar
  20. 20.
    Song HW, Guo SR, Hu ZQ (1999) Nanostruct Mater 11:203CrossRefGoogle Scholar
  21. 21.
    Zaichenko SG, Glezer AM (1999) Interface Sci 7:57CrossRefGoogle Scholar
  22. 22.
    Singh RN, Coble RL (1974) J Appl Phys 45:981CrossRefGoogle Scholar
  23. 23.
    Auten TA, Radcliffe SV, Gordon RB (1976) J Am Ceram Soc 59:40CrossRefGoogle Scholar
  24. 24.
    Bahr DF, Kramer DE, Gerberich WW (1998) Acta Mater 46:3605CrossRefGoogle Scholar
  25. 25.
    Gaillard Y, Tromas C, Woirgard J (2004) Acta Mater 54:1409CrossRefGoogle Scholar
  26. 26.
    Chattopadhyay PP, Pabi SK, Manna I (2001) Mater Chem Phys 68:80CrossRefGoogle Scholar
  27. 27.
    Kennard FL, Bradt RC, Stubican VS (1976) J Am Ceram Soc 59:160CrossRefGoogle Scholar
  28. 28.
    Loubet JL, Georges JM, Marcheshini O, Meille G (1984) J Tribol 106:43CrossRefGoogle Scholar
  29. 29.
    Higashida K, Narita N, Onodera R, Minato S, Okazaki S (1997) Mater Sci Eng A 237:72CrossRefGoogle Scholar
  30. 30.
    Wolff U, Pryds N, Johnson E, Wert JA (2004) Acta Mater 52:1989CrossRefGoogle Scholar
  31. 31.
    Baricco M, Castellero A, Di Chio M et al (2007) J Alloys Compd 434–435:183CrossRefGoogle Scholar
  32. 32.
    Wang HL, Lin CH, Hon MH (1997) Thin Solid Films 310:260CrossRefGoogle Scholar
  33. 33.
    Li Q, Yu YH, Bhatia CS, Marks LD et al (2000) J Vac Sci Technol A 18:2333CrossRefGoogle Scholar
  34. 34.
    Yeheskel O, Chaim R, Shen Z, Nygren M (2005) J Mater Res 20:719CrossRefGoogle Scholar
  35. 35.
    Hammond BL, Armstrong RW (1988) Phil Mag Lett 57:41CrossRefGoogle Scholar
  36. 36.
    Sangwal K, Gorostiza P, Servat J, Sanz F (1999) J Mater Res 14:3973CrossRefGoogle Scholar
  37. 37.
    Bush MB (1993) Mater Sci Eng A 161:127CrossRefGoogle Scholar
  38. 38.
    Chaim R (1997) J Mater Res 12:1828CrossRefGoogle Scholar
  39. 39.
    Cook RF, Pharr GM (1990) J Am Ceram Soc 73:787CrossRefGoogle Scholar
  40. 40.
    Larsson PL, Giannakopoulos AE (1998) Mater Sci Eng A 254:268CrossRefGoogle Scholar
  41. 41.
    McColm IJ (1990) Ceramic hardness. Plenum, New YorkCrossRefGoogle Scholar
  42. 42.
    Roberts SG (1988) Phil Mag A 58:347CrossRefGoogle Scholar
  43. 43.
    Cook RF, Liniger EG (1992) J Mater Sci 27:4751. doi: CrossRefGoogle Scholar
  44. 44.
    Rice RW (1971) In: Kriegel WW, Palmour H III (eds) Materials science research. Plenum Press, NYGoogle Scholar
  45. 45.
    Zhang J, Sakai M (2004) Mater Sci Eng A 381:62CrossRefGoogle Scholar
  46. 46.
    Wang N, Palumbo G, Wang Z, Erb U, Aust KT (1993) Scripta Metall Mater 28:253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations