Skip to main content
Log in

Evaluation of additive effects and homogeneity of the starting mixture on the nuclei-growth processes of barium titanate via a solid state route

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In an attempt to obtain finest possible microparticles of BaTiO3 (BT) with highest possible tetragonality via a solid state route, starting mixtures comprising BaCO3 and TiO2 were subjected to various pretreatments including addition of glycine and mechanical activation. Reaction processes were monitored by the changes in the weight, crystallinity, and morphology in detail. While mechanical activation with glycine significantly increased the rate of reaction and homogeneity of the particle size of the product, BT, simultaneous particle growth of BT was intolerably acute for micro-electronic devices. The fast particle coarsening was predominated by the coalescence of BT tiny particles formed around titania. A mixture with higher homogeneity was attained by using finer starting materials under wet mixing, avoiding significant mechanical stressing. Particle growth of BT was suppressed to ca. 100 nm to obtain fully crystallized BT particles without significant loss of tetragonality and, hence, close to meet our requirements for MLCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mizuno Y, Hagiwara T, Kishi H (2007) J Ceram Soc Jpn 115:360. doi:https://doi.org/10.2109/jcersj.115.360

    Article  CAS  Google Scholar 

  2. Arlt G, Hennings D, With G (1985) J Appl Phys 58:1619. doi:https://doi.org/10.1063/1.336051

    Article  CAS  Google Scholar 

  3. Dawson WJ (1988) Am Ceram Soc Bull 67:1673

    CAS  Google Scholar 

  4. Hennings D, Rosenstein G, Schreinemacher H (1991) J Eur Ceram Soc 8:107. doi:https://doi.org/10.1016/0955-2219(91)90116-H

    Article  CAS  Google Scholar 

  5. Wada N (2004) J Soc Powder Technol Jpn 41:35

    CAS  Google Scholar 

  6. Hennings DFK, Schreinemacher BS, Schreinemacher H (2001) J Am Ceram Soc 84:2777

    Article  CAS  Google Scholar 

  7. Buscaglia MT, Bassoli M, Buscaglia V, Alessio R (2005) J Am Ceram Soc 88:2374. doi:https://doi.org/10.1111/j.1551-2916.2005.00451.x

    Article  CAS  Google Scholar 

  8. Ando C, Yanagawa R, Chazono H, Kishi H, Senna M (2004) J Mater Res 19:3592. doi:https://doi.org/10.1557/JMR.2004.0461

    Article  CAS  Google Scholar 

  9. Yanagawa R, Sennna M, Ando C, Chazono H, Kishi H (2007) J Am Ceram Soc 90:809. doi:https://doi.org/10.1111/j.1551-2916.2007.01498.x

    Article  CAS  Google Scholar 

  10. Ando C, Chazono H, Kishi H (2004) Key Eng Mater 269:161

    Article  CAS  Google Scholar 

  11. Oguchi H, Ando C, Chazono H, Kishi H, Senna M (2005) J Phys France IV 128:33

    Article  CAS  Google Scholar 

  12. Ando C, Kishi H, Oguchi H, Senna M (2006) J Am Ceram Soc 89:1709. doi:https://doi.org/10.1111/j.1551-2916.2006.00917.x

    Article  CAS  Google Scholar 

  13. Kubo T, Kato M, Fujita T (1967) Kogyo Kagaku Zasshi 70:847

    Article  CAS  Google Scholar 

  14. Niepce JC, Thomas G (1990) Solid State Ionics 43:69. doi:https://doi.org/10.1016/0167-2738(90)90472-4

    Article  CAS  Google Scholar 

  15. Fujikawa Y, Yamane F, Nomura T (2003) J Jpn Soc Powder Metall 50:751

    Article  CAS  Google Scholar 

  16. Lotnyk A, Senz S, Hesse D (2006) Solid State Ionics 177:429. doi:https://doi.org/10.1016/j.ssi.2005.12.027

    Article  CAS  Google Scholar 

  17. Lotnyk A, Senz S, Hesse D (2007) Acta Mater 55:2671. doi:https://doi.org/10.1016/j.actamat.2006.12.022

    Article  CAS  Google Scholar 

  18. (a) Senna M (1993) Solid State Ionics 3:63; (b) Senna M (2001) Mater Sci Eng A 39:304; (c) Senna M (2002) Ann Chim Sci Mat 27:3

  19. Ando C, Tsuzuku K, Kobayashi T, Kishi H, Kuroda S, Senna MJ, Mater Sci: Mater Electron (to appear)

  20. Society of Powder Technology (1994) Particle size analysis and technology. Nikkan-Kogyo Shinbun shya, Tokyo

  21. Izumi F, Ikeda T (2000) Mater Sci Forum 321–324:198

    Article  Google Scholar 

  22. Wakamatsu T, Fujiwara T, Ishihara KN, Shingu PH (2003) J Jpn Soc Powder Metall 48:950

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Mr. T. Hagiwara for Rietveld analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chie Ando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, C., Suzuki, T., Mizuno, Y. et al. Evaluation of additive effects and homogeneity of the starting mixture on the nuclei-growth processes of barium titanate via a solid state route. J Mater Sci 43, 6182–6192 (2008). https://doi.org/10.1007/s10853-008-2932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2932-3

Keywords

Navigation