Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6167–6176 | Cite as

Effect of liquid additives on morphology and properties of thermoplastic elastomers prepared from phase-modified EPDM elastomer and isotactic polypropylene blends

  • Pinka Chakraborty
  • Anirban Ganguly
  • Suman Mitra
  • Anil K. BhowmickEmail author
Article

Abstract

Thermoplastic elastomers (TPEs) were prepared from ternary blends of ethylene propylene diene poly methylene rubber (EPDM), isotactic polypropylene (PP), and low loadings (5–10 phr) of different types of interfacial phase modifiers (like maleated EPDM, styrene-ethylene-co-butylene-styrene block copolymer, and maleated PP). These showed much improved physico-mechanical properties compared to the binary blend of EPDM-PP. The effects of non-polar paraffin oil and polar di-octyl phthalate liquid additives (5–20 phr) were investigated in these phase-modified ternary and binary EPDM-PP blends. Only 5 phr of liquid additives provided synergistic improvement in physical properties (maximum stress, modulus, and elongation at break) and generated improved finer morphology of the ternary blends as revealed from scanning electron and atomic force microscopy studies. Enhanced physical properties and dynamic mechanical properties of these blends were explained with the help of better phase morphology and enhanced crystallinity of the blends.

Keywords

Dynamic Mechanical Thermal Analysis Dynamic Mechanical Thermal Analysis Isotactic Polypropylene Thermoplastic Elastomer Ternary Blend 

References

  1. 1.
    Paul DR, Newman S (1978) Polymer blends, vols 1 and 2. Academic Press, New YorkGoogle Scholar
  2. 2.
    Utracki LA (1990) Polymer alloys and blends: thermodynamics and rheology. Hanser, MunichGoogle Scholar
  3. 3.
    Coran AY, Patel R (1980) Rubber Chem Technol 53:141CrossRefGoogle Scholar
  4. 4.
    Coran AY (1995) Rubber Chem Technol 68:351CrossRefGoogle Scholar
  5. 5.
    Sabet SA, Pudyak RC, Rader CP (1996) Rubber Chem Technol 69:476CrossRefGoogle Scholar
  6. 6.
    Winters R, Lugtenburg J, Litvinov VM, Duin MV, de Groot HJM (2001) Polymer 42:9745. doi: https://doi.org/10.1016/S0032-3861(01)00504-3 CrossRefGoogle Scholar
  7. 7.
    Ellul MD (1998) Rubber Chem Technol 71:244CrossRefGoogle Scholar
  8. 8.
    Legge NR, Holden G, Quirk RP, Schroeder HE (eds) (1996) Thermoplastic elastomers: a comprehensive review, 2nd edn. Hanser, MunichGoogle Scholar
  9. 9.
    Bhowmick AK, Stephens HL (eds) (2001) Handbook of elastomers, 2nd edn. New York, Marcel Dekker Inc.Google Scholar
  10. 10.
    Walker BM, Rader CP (eds) (1988) Handbook of thermoplastic elastomers, Ch. 4, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  11. 11.
    De SK, Bhowmick AK (1990) Thermoplastic elastomers from rubber–plastic blends. Ellis Horwood, West Sussex, UKGoogle Scholar
  12. 12.
    Baranwal KC, Stephens HL (eds) (2001) Basic elastomer technology, Ch. 13, ACS Rubber Div. 1st edn. Akron, OHGoogle Scholar
  13. 13.
    Bhowmick AK (ed) (2007) Current topics in elastomers research, Ch. 5, 1st edn. Taylor & Francis, CRC press, FloridaGoogle Scholar
  14. 14.
    Sengupta P, Noordermeer JWM (2005) Polymer 46:12298. doi: https://doi.org/10.1016/j.polymer.2005.10.075 CrossRefGoogle Scholar
  15. 15.
    Sengupta P, Noordermeer JWM, Sengers WGF, Gotsis AD (2003) Elastomer 38:27Google Scholar
  16. 16.
    Duin MV (2006) Macromol Symp 11:233Google Scholar
  17. 17.
    Jayaraman K, Kolli VG, Kang SY, Kumar S, Ellul MD (2004) J Appl Polym Sci 93:113. doi: https://doi.org/10.1002/app.20414 CrossRefGoogle Scholar
  18. 18.
    Ponsard-Fillette M, Barre’s C, Cassagnau P (2005) Polymer 46:10256. doi: https://doi.org/10.1016/j.polymer.2005.08.015 CrossRefGoogle Scholar
  19. 19.
    Sengupta P, Noordermeer JWM (2004) J Elast Plast 36:307. doi: https://doi.org/10.1177/0095244304042668 CrossRefGoogle Scholar
  20. 20.
    Chakraborty P, Ganguly A, Mitra S, Bhowmick AK (2008) Polym Eng Sci 48:477. doi: https://doi.org/10.1002/pen.20984 CrossRefGoogle Scholar
  21. 21.
    Chakraborty P, Ganguly A, Mitra S, Bhowmick AK (Jan 8–10, 2008) Proceeding of the Int. Conf. Rub. Rub-Like Mat, ICRRM, IIT Kharagpur, India, p 113Google Scholar
  22. 22.
    Choudhury NR, Bhowmick AK (1998) J Appl Polym Sci 38:1091. doi: https://doi.org/10.1002/app.1989.070380609 CrossRefGoogle Scholar
  23. 23.
    Jha A, Bhowmick AK (1997) Rubber Chem Technol 70:798CrossRefGoogle Scholar
  24. 24.
    Kader A, Bhowmick AK (2001) Rubber Chem Technol 74:662CrossRefGoogle Scholar
  25. 25.
    Jacob C, De PP, Bhowmick AK, De SK (2001) J Appl Polym Sci 82:3304. doi: https://doi.org/10.1002/app.2189 CrossRefGoogle Scholar
  26. 26.
    Maiti M, Patel J, Naskar K, Bhowmick AK (2007) J Appl Polym Sci 102:5463. doi: https://doi.org/10.1002/app.25106 CrossRefGoogle Scholar
  27. 27.
    Gessler AM, Haslett WH (1962) US Patent 3037954Google Scholar
  28. 28.
    Fischer WK (1973) US Patent 3758643Google Scholar
  29. 29.
    Coran AY, Patel R (1978) US Patent 4104210Google Scholar
  30. 30.
    Eisele U, Jache D, Mott L, Schabel KH (1988) US Patent 4745149Google Scholar
  31. 31.
    Gessler AM, Kresge EN (1979) US Patent 4132698Google Scholar
  32. 32.
    Ellul MD, Hazelton DR (2006) US Patent 7094837Google Scholar
  33. 33.
    Ito Y, Nakahama H, Ichino K (2007) Wipo Patent WO/2007/060843Google Scholar
  34. 34.
    Medintseva TI, Kuptsov SA, Erina NA, Prut EV, Soedineniya V, Ai Seriya, Seriya B (2007) Semenov Inst Chem Phys 49:54Google Scholar
  35. 35.
    Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof Abe PHJ (2000) Polymer 41:1817CrossRefGoogle Scholar
  36. 36.
    Ohlsson B, Tornell B (1996) Polym Eng Sci 36:1457Google Scholar
  37. 37.
    Yerina N, Magonov SN (2003) Rubber Chem Technol 76:846CrossRefGoogle Scholar
  38. 38.
    Karger-Kocsis J, Kalló A, Kuleznev VN (1981) Acta Polym 32:578. doi: https://doi.org/10.1002/actp.1981.010320912 CrossRefGoogle Scholar
  39. 39.
    Litvinov VM (2006) Macromolecules 39:8727. doi: https://doi.org/10.1021/ma061911h CrossRefGoogle Scholar
  40. 40.
    Feng W, Isayev AI (2004) Polymer 45:1207. doi: https://doi.org/10.1016/j.polymer.2003.12.033 CrossRefGoogle Scholar
  41. 41.
    Dai YQ, Wang B, Wang SJ, Jiang T, Cheng SY (2003) Radiat Phys Chem 68:493. doi: https://doi.org/10.1016/S0969-806X(03)00216-0 CrossRefGoogle Scholar
  42. 42.
    Abraham T, Barber N, Mallamaci M (2007) Rubber Chem Technol 80:324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pinka Chakraborty
    • 1
  • Anirban Ganguly
    • 1
  • Suman Mitra
    • 1
  • Anil K. Bhowmick
    • 1
    Email author
  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations