Journal of Materials Science

, Volume 43, Issue 18, pp 6177–6181 | Cite as

Effect of chelating agents on the preferred orientation of ZnO films by sol-gel process

  • Sang Hoon Yoon
  • Dan Liu
  • Dongna Shen
  • Minseo Park
  • Dong-Joo KimEmail author


The effect of chelating agents of ZnO precursor solutions on crystallization behavior was investigated. Two different additives, monoethanolamine (MEA) and diethanolamine (DEA), and crystalline Pt (111)/Si and amorphous SiNx/Si substrates, were used for this study. ZnO film grown on SiNx/Si from a DEA-chelated precursor solution shows a poorly oriented microstructure with weak crystallization peaks, while ZnO film grown on Pt(111)/Si shows a c-axis preferred orientation. In the case of ZnO films prepared with a MEA-chelated precursor solution, all films show a strong preferred orientation irrespective of substrate type. This result clearly demonstrates the role of the chelating agent on the crystallographic orientation and crystallization behavior of sol-gel processed ZnO films.


Precursor Solution Crystallization Behavior Diethanolamine Monoethanolamine Chemical Solution Deposition 



This work was partially supported by USDA-CSREES (2006-34394-16953), the National Science Foundation (DMR-0605270), and the US Federal Aviation Administration (FAA) Office of Aerospace Medicine through the Air Transportation Center of Excellence for Airliner Cabin Environment Research (ACER). Although the FAA has sponsored parts of this project, it neither endorses nor rejects the findings of this research.


  1. 1.
    Nishino J, Ohshio S, Kamata K (1992) J Am Ceram Soc 75:3469. doi: CrossRefGoogle Scholar
  2. 2.
    Lee JH, Park BO (2003) Thin Solid Films 426:94. doi: CrossRefGoogle Scholar
  3. 3.
    Znaidi L, Illia GJAAS, Benyahia S, Sanchez C, Kanaev AV (2003) Thin Solid Films 428:257. doi: CrossRefGoogle Scholar
  4. 4.
    Jin M, Feng J, De-heng Z, Hong-lei M, Shu-ying L (1999) Thin Solid Films 357:98. doi: CrossRefGoogle Scholar
  5. 5.
    Petrov I, Orlinov V, Misiuk A (1984) Thin Solid Films 120:55. doi: CrossRefGoogle Scholar
  6. 6.
    Kim KH, Park KC, Ma DY (1997) J Appl Phys 81:7764. doi: CrossRefGoogle Scholar
  7. 7.
    Myoung JM, Yoon WH, Lee DH, Yun I, Bae SH, Lee SY (2002) Jpn J Appl Phys 41:28. doi: CrossRefGoogle Scholar
  8. 8.
    Wessler B, Lange FF, Mader W (2002) J Mater Res 17:1644. doi: CrossRefGoogle Scholar
  9. 9.
    Ohya Y, Saiki H, Tanaka T, Takahashi Y (1996) J Am Ceram Soc 79:825. doi: CrossRefGoogle Scholar
  10. 10.
    Kim YS, Tai WP, Shu SJ (2005) Thin Solid Films 491:153. doi: CrossRefGoogle Scholar
  11. 11.
    Ohya Y, Saiki H, Takahashi Y (1994) J Mater Sci 29:4099. doi: CrossRefGoogle Scholar
  12. 12.
    Ohyama M, Kozuka H, Yoko T, Sakka S (1996) J Ceram Soc Jpn 104:296CrossRefGoogle Scholar
  13. 13.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65. doi: CrossRefGoogle Scholar
  14. 14.
    Yoon SH, Kim DJ (2007) J Cryst Growth 303:568. doi: CrossRefGoogle Scholar
  15. 15.
    Fujihara S, Sasaki C, Kimura T (2001) Appl Surf Sci 180:341. doi: CrossRefGoogle Scholar
  16. 16.
    Ohyama M, Kozuka H, Yoko T (1997) Thin Solid Films 306:78. doi: CrossRefGoogle Scholar
  17. 17.
    Ohyama M, Kozuka H, Yoko T (1998) J Am Ceram Soc 81:1622CrossRefGoogle Scholar
  18. 18.
    Asmar RA, Atanas JP, Ajaka M, Zaatar Y, Ferblantier G, Sauvajol JL et al (2005) J Cryst Growth 279:394. doi: CrossRefGoogle Scholar
  19. 19.
    Huang Y, Liu M, Li Z, Zeng Y, Liu S (2003) Mater Sci Eng B 97:111. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sang Hoon Yoon
    • 1
  • Dan Liu
    • 1
  • Dongna Shen
    • 1
  • Minseo Park
    • 1
  • Dong-Joo Kim
    • 1
    Email author
  1. 1.Auburn UniversityAuburnUSA

Personalised recommendations