Journal of Materials Science

, Volume 43, Issue 18, pp 6193–6199 | Cite as

A theoretical analysis for oxidation of titanium carbide

  • Xinmei Hou
  • Xiaodan Liu
  • Min Guo
  • Kuo-Chih ChouEmail author


The oxidation kinetics of titanium carbide (TiC) powder has been studied based on the experimental data summarized as well as theoretical analysis in terms of our model. The effects of temperature, especially the oxygen partial pressure on the oxidation kinetics, are discussed not only qualitatively but also quantitatively in the light of our special theoretical approach. The calculated results show that our theoretical analysis is reasonable.


Oxygen Partial Pressure Oxidation Behavior Titanium Carbide SiAlON Isothermal Oxidation 



Original TiC material phase


Oxide material phase


Apparent activation energy of oxidation


Reacted fraction of oxidation

\( D_{0}^{o\beta} \)

Diffusion coefficient of oxygen


Coefficient depending on substance and reaction


Radius of particle with original whole particle


Radius of particle with original TiC powder


Thickness of the oxide layer in the particle\( = R_{0} - r \)


Equilibrium constant

\( P_{{{\text{O}}_{2}}} \)

Partial pressure of oxygen in gas phase

\( P_{{{\text{O}}_{ 2}}}^{\text{eq}} \)

Oxygen partial pressure in equilibrium with oxide


gas constant


Time in second


Absolute temperature with K


Temperautre-increasing rate



The authors would like to express their thanks to the Doctor Foundation of USTB for their kind financial support on Contract No: 11120010.


  1. 1.
    Liu ZG, Guo JT, Ye LL, Li GS, Hu ZQ (1994) Appl Phys Lett 65:2666. doi: CrossRefGoogle Scholar
  2. 2.
    Koc R, Meng C, Swift GA (2000) J Mater Sci 35:3131. doi: CrossRefGoogle Scholar
  3. 3.
    EI-Eskandarany MS (2000) J Alloy Comp 305:225. doi: CrossRefGoogle Scholar
  4. 4.
    Panchal JM, Vela T, Robisch T (1990) In: Masounave J, Hamel FG (eds) Reinforced metal composites. ASM, Materials ParkGoogle Scholar
  5. 5.
    Song GM, Zhou Y, Kang SJL (2003) Mater Des 24:639CrossRefGoogle Scholar
  6. 6.
    Stewart RW, Cutler I (1967) J Am Ceram Soc 50:176. doi: CrossRefGoogle Scholar
  7. 7.
    MacDonald NF, Ransley CE (1959) Powder Metab 172:3Google Scholar
  8. 8.
    Shimada S, Kozeki M (1992) J Mater Sci 27:1869. doi: CrossRefGoogle Scholar
  9. 9.
    Shimada S (1996) J Mater Sci 31:673. doi: CrossRefGoogle Scholar
  10. 10.
    Lavrenko YA, Glebov LA, Pomitkin AP, Chuprina VG, Protsenko TG (1975) Oxid Metab 9:171. doi: CrossRefGoogle Scholar
  11. 11.
    Voitovich VB (1997) High Temp Mater Process 16:243CrossRefGoogle Scholar
  12. 12.
    Shimada S, Yunazar F (2000) J Am Ceram 83:721CrossRefGoogle Scholar
  13. 13.
    Biedunkiewicz A, Gordon N, Straszko J, Tamir S (2007) J Therm Anal Calorim 88:717. doi: CrossRefGoogle Scholar
  14. 14.
    Biedunkiewicz A, Szymczyk A, Chrosciechowska J (2004) J Therm Anal Calorim 77:75. doi: CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Hou XM, Chou KC, Hu XJ, Zhao HL J Alloy Compd. doi: CrossRefGoogle Scholar
  17. 17.
    Hou XM, Chou KC, Zhong XC, Seetharaman S J Alloy Compd. doi: CrossRefGoogle Scholar
  18. 18.
    Hou XM, Chou KC, Li FS (2008) J Eur Ceram Soc 28:1243. doi: CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Hou XM, Zhang GH, Chou KC, Zhong XC Int J Appl Ceram Tech. doi:

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xinmei Hou
    • 1
  • Xiaodan Liu
    • 1
  • Min Guo
    • 1
  • Kuo-Chih Chou
    • 1
    • 2
    Email author
  1. 1.Department of Physical ChemistryUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Materials Sciences and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations