Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6206–6213 | Cite as

Estimation of the elastic anisotropy of sisal fibres by an inverse method

  • R. NtengaEmail author
  • A. Béakou
  • J. Atangana Atéba
  • L. Ayina Ohandja
Article

Abstract

This paper is concerned with an inverse method for the characterization of the elastic anisotropy of plant fibres. A good knowledge of the properties of composites reinforced with these fibres is essential for the safe design of the related structures. In this work, experimentation and analytical modelling were thoroughly combined to optimize the determination of plant fibre properties from their related composites. The experimental work focused on the manufacture and characterization of unidirectional (UD) sisal/epoxy composites. Tensile tests were performed to measure the axial and off-axes stiffness of these composites. Tests' data were eventualy used in an optimization process based on a micromechanical model to estimate the fibres’ elastic constants. Sisal fibres used herein exhibited a high degree of elastic anisotropy.

Keywords

Fibre Orientation Fibre Volume Fraction Elastic Anisotropy Jute Fibre Plant Fibre 

Notes

Acknowledgement

Our thanks go to Mr Jacques Lepetit of INRA, Clermont-Ferrand, for his technical support.

References

  1. 1.
    Persson K (2000) Doctoral thesis in structural mechanics. Lund University, SwedenGoogle Scholar
  2. 2.
    Harrington JJ, Booker R, Astley RJ (1995) Holz Roh Werkst 56(1):37Google Scholar
  3. 3.
    Baley C (2002) Compos A 33:939CrossRefGoogle Scholar
  4. 4.
    Toll S, Månson JAE (1995) J Appl Mech 62(1):223CrossRefGoogle Scholar
  5. 5.
    Neagu RC, Gamstedt EK, Lindström M (2004) Proceedings of the 11th European conference on composite materials (ECCM11), Athens, GreeceGoogle Scholar
  6. 6.
    Cichocki FR Jr, Thomason JL (2002) Compos Sci Technol 62:669CrossRefGoogle Scholar
  7. 7.
    Berthelot JM (2005) Matériaux composites: comportement et analyse des structures, 4th edn. Tec et Doc., Lavoisier, ParisGoogle Scholar
  8. 8.
    Christensen RM (1991) Mechanics of composite materials. Krieger Publishing Company, Malabar, FLGoogle Scholar
  9. 9.
    Hashin Z, Rosen B (1964) J Mech Phys Solids 31:223Google Scholar
  10. 10.
    Hashin Z (1979) J Appl Mech 46:543CrossRefGoogle Scholar
  11. 11.
    Wagner HD, Nairn JA (1997) Compos Sci Technol 57:1289CrossRefGoogle Scholar
  12. 12.
    Christensen RM, Lo KH (1979) J Mech Phys Solids 27:315CrossRefGoogle Scholar
  13. 13.
    Lagoudas DC, Seidel GD (2006) Mech Mater 38:884CrossRefGoogle Scholar
  14. 14.
    Madsen K, Nielsen HB (2002) Supplementary notes for 02611 optimization and data fitting, IMM, DTU. https://doi.org/www.imm.dtu.dk/
  15. 15.
    Marquardt D (1963) SIAM J Appl Math 11:431CrossRefGoogle Scholar
  16. 16.
    Moré JJ (1977) In: Watson GA (ed) Numerical analysis, Lecture notes in mathematics 630. Springer Verlag, pp 105–116Google Scholar
  17. 17.
    Ntenga R, Atangana Ateba J, Beakou A, Ayina Ohandja L (2006) Proceedings of the 12th European conference on composite materials (ECCM12), Biaritz, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Ntenga
    • 1
    • 2
    Email author
  • A. Béakou
    • 1
  • J. Atangana Atéba
    • 2
  • L. Ayina Ohandja
    • 2
  1. 1.Laboratoire de Mécanique et IngénieriesIFMA et UBPAubièreFrance
  2. 2.Laboratoire de Mécanique, Matériaux, Structures et ProductiqueUniversité de DoualaDoualaCameroon

Personalised recommendations