Journal of Materials Science

, Volume 43, Issue 18, pp 6223–6232 | Cite as

Analytical modeling of residual stresses in multilayered superconductor systems

  • C. H. HsuehEmail author
  • M. Paranthaman


Residual stresses-induced damages in multilayered films grown on technical substrates present a reliability issue for the fabrication and applications of multilayered superconductor systems. Using closed-form solutions for residual stresses in multilayered systems, specific results were calculated for residual stresses induced by the lattice and the thermal mismatches in the system of YBCO/CeO2/YSZ/Y2O3 films on a Ni-5 W substrate. It was concluded that lattice mismatch-induced residual stresses must be relaxed by forming interfacial defects. Studies of residual thermal stresses showed the following. When the thickness of a film is negligible compared to the substrate, the changes of its properties modify the residual stresses in this film layer but have negligible effects on the residual stresses in other layers in the system. On the other hand, when the thickness of certain film layer is not negligible compared to the substrate, residual stresses in each layer can be controlled by adjusting the properties and thickness of this film layer. Finally, the effects of buffer layers on thermal stresses in YBa2Cu3O7–x (YBCO) were addressed by using YBCO/LaMnO3/homo-epi MgO/IBAD MgO/Y2O3/Al2O3 films on Hastelloy substrate as an example.


Residual Stress Thermal Stress Buffer Layer Film Layer Multilayered System 



The authors thank Dr. E. D. Specht and Dr. A. Shyam for reviewing the manuscript. This work was jointly sponsored by US Department of Energy, Office of Electricity Delivery and Energy Reliability—Superconductivity for Electric Systems Program and Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under contract DE-AC05-00OR22725 with UT-Battelle, LLC.


  1. 1.
    Paranthaman M, Izumi T (2004) MRS Bull 29:533CrossRefGoogle Scholar
  2. 2.
    Paranthaman M, Sathyamurthy S, Heatherly L, Martin PM, Goyal A, Kodenkandath T et al (2006) Physica C 445–448:529. doi: CrossRefGoogle Scholar
  3. 3.
    Goyal A, Paranthaman M, Schoop U (2004) MRS Bull 29:552CrossRefGoogle Scholar
  4. 4.
    Stoney GG (1909) Proc R Soc Lond 82:172. doi: CrossRefGoogle Scholar
  5. 5.
    Timoshenko S (1925) J Opt Soc Am 11:233CrossRefGoogle Scholar
  6. 6.
    Saul RH (1969) J Appl Phys 40:3273. doi: CrossRefGoogle Scholar
  7. 7.
    Olsen GH, Ettenberg M (1977) J Appl Phys 48:2543. doi: CrossRefGoogle Scholar
  8. 8.
    Feng ZC, Liu HD (1983) J Appl Phys 54:83. doi: CrossRefGoogle Scholar
  9. 9.
    Iancu OT, Munz D, Eigenman B, Scholtes B, Macherauch E (1990) J Am Ceram Soc 73:1144. doi: CrossRefGoogle Scholar
  10. 10.
    Liu HC, Murarka SP (1992) J Appl Phys 72:3458. doi: CrossRefGoogle Scholar
  11. 11.
    Shaw LL (1998) Compos Part B-Eng 29:199. doi: CrossRefGoogle Scholar
  12. 12.
    Hsueh CH (2002) J Appl Phys 91:9652. doi: CrossRefGoogle Scholar
  13. 13.
    Hsueh CH (2002) Thin Solid Films 418:182. doi: CrossRefGoogle Scholar
  14. 14.
    Hsueh CH, DeJonghe LC, Lee CS (2006) J Am Ceram Soc 89:251. doi: CrossRefGoogle Scholar
  15. 15.
    Hu YY, Huang WM (2004) J Appl Phys 96:4154. doi: CrossRefGoogle Scholar
  16. 16.
    Zhang NH, Chen JZ (2008) J Appl Mech 75:044503. doi: CrossRefGoogle Scholar
  17. 17.
    Cheon JH, Shankar PS, Singh JP (2005) Supercond Sci Technol 18:142. doi: CrossRefGoogle Scholar
  18. 18.
    Arda L, Ataoglu S, Sezer S, Abdulaliyev Z (2007) Surf Coat Technol 202:439. doi: CrossRefGoogle Scholar
  19. 19.
    Ochando IM, Cáceres D, García-López J, Escobar-Galindo R, Jiménez-Rioboó RJ, Prieto C (2007) Vacuum 81:1457. doi: CrossRefGoogle Scholar
  20. 20.
    Lee CK, Kim WS, Park HH, Jeon H, Pae YH (2005) Thin Solid Films 473:335. doi: CrossRefGoogle Scholar
  21. 21.
    Clickner CC, Ekin JW, Cheggour N, Thieme CLH, Qiao Y, Xie YY et al (2006) Cryogenics 46:432. doi: CrossRefGoogle Scholar
  22. 22.
    Sanchez-Herencia AJ, Pascual C, He J, Lange FF (1999) J Am Ceram Soc 82:1512CrossRefGoogle Scholar
  23. 23.
    Nagai H (1974) J Appl Phys 45:3789. doi: CrossRefGoogle Scholar
  24. 24.
    Ayers JE, Ghandhi SK, Schowalter LJ (1991) J Cryst Growth 113:430. doi: CrossRefGoogle Scholar
  25. 25.
    Zheleva T, Jagannadham K, Narayan J (1994) J Appl Phys 75:860. doi: CrossRefGoogle Scholar
  26. 26.
    Riesz F (1996) J Vac Sci Technol A 14:425. doi: CrossRefGoogle Scholar
  27. 27.
    Huang XR, Bai J, Dudley M, Dupuis RD, Chowdhury U (2005) Appl Phys Lett 86:211916. doi: CrossRefGoogle Scholar
  28. 28.
    Cantoni C, Goyal A, Schoop U, Li X, Rupich MW, Thieme C et al (2005) IEEE Trans Appl Supercond 15:2981. doi: CrossRefGoogle Scholar
  29. 29.
    Qiu Y, Li M, Liu G, Zhang B, Wang Y, Zhao L (2007) J Cryst Growth 308:325. doi: CrossRefGoogle Scholar
  30. 30.
    Xiong J, Qin W, Cui X, Tao B, Tang J, Li Y (2006) Physica C 442:124. doi: CrossRefGoogle Scholar
  31. 31.
    Chirayil TG, Paranthaman M, Beach DB, Lee DF, Goyal A, Williams RK et al (2000) Physica C 336:63. doi: CrossRefGoogle Scholar
  32. 32.
    Bhuiyan MS, Paranthaman M, Salama K (2006) Supercond Sci Technol 19:R1. doi: CrossRefGoogle Scholar
  33. 33.
    Molina L, Knoth K, Engel S, Holzapfel B, Eibl O (2006) Supercond Sci Technol 19:1200. doi: CrossRefGoogle Scholar
  34. 34.
    Obrador X et al (2006) Supercond Sci Technol 19:S13. doi: CrossRefGoogle Scholar
  35. 35.
    Celik E, Sayman O, Karakuzu R, Ozman Y (2007) Mater Des 28:2184CrossRefGoogle Scholar
  36. 36.
    Zhu XB et al (2007) Physica C 467:73. doi: CrossRefGoogle Scholar
  37. 37.
    Knoth K, Hühne R, Oswald S, Schultz L, Holzapfel B (2007) Acta Mater 55:517. doi: CrossRefGoogle Scholar
  38. 38.
    Darling TW, Migliori A, Moshopoulou EG, Trugman SA, Neumeier JJ, Sarrao JL et al (1998) Phys Rev B 57:5093. doi: CrossRefGoogle Scholar
  39. 39.
    Kartopu G, Es-Souni M (2006) J Appl Phys 99:033501. doi: CrossRefGoogle Scholar
  40. 40.
    Huang QJ, Cheng Y, Liu XJ, Xu XD, Zhang SY (2006) Ultrasonics 44:e1223. doi: CrossRefGoogle Scholar
  41. 41.
    Thurn J, Cook RF (2004) J Mater Sci 39:4809. doi: CrossRefGoogle Scholar
  42. 42.
    Hsueh CH, Luttrell CR, Lee S, Wu TC, Lin HY (2006) J Am Ceram Soc 89:1632. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations