Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6214–6222 | Cite as

Effect of Al content on stacking fault energy in austenitic Fe–Mn–Al–C alloys

  • Xing TianEmail author
  • Hong Li
  • Yansheng Zhang
Article

Abstract

Effect of Al content on the stacking fault energy (SFE) was investigated in the austenitic Fe–25Mn–(1.16–9.77)Al–0.68C (at%) alloys by X-ray diffraction line profile analysis and thermodynamic estimation, and was discussed on the basis of anomaly in shear modulus caused by the antiferromagnetic transition. The experimental results show that the stacking fault probability decreases with increasing Al content, the observed SFE increases linearly when Al content is lower than 6.27 at%, and markedly as it is more than 6.27 at%. The thermodynamic estimation indicates that the non-magnetic component of SFE increases faster than the observed one with increasing Al content in the antiferromagnetic state, and both are almost equal in the paramagnetic state. The magnetic order increases SFE in the antiferromagnetic state, and the magnetic component of SFE depends on the average magnetic moment and Néel temperature. The increases in the localized magnetic moment and the decrease in the Néel temperature are caused by the addition of Al atoms into the austenitic Fe–Mn alloys and are accompanied by the anomaly in shear modulus, which affects SFE in the antiferromagnetic state. The anomalous drop in shear modulus leads to the inconsistency for the variations of the observed SFE and non-magnetic component with Al content in the antiferromagnetic state.

Keywords

Stack Fault Energy Localize Magnetic Moment Antiferromagnetic State Average Magnetic Moment Antiferromagnetic Transition 

Notes

Acknowledgement

The authors thank Professor Shuzhi LIN for his valuable help in the XRD testing and for the profitable discussion.

References

  1. 1.
    Ye CS (1977) Acta Metall Sin 13:149 (in Chinese)Google Scholar
  2. 2.
    Shih CH, Zhang YS et al (1984) Adv Cryog Eng Mater 31:161CrossRefGoogle Scholar
  3. 3.
    Zhang YS, Su LJ (1983) Acta Metall Sin 19:A253 (in Chinese)Google Scholar
  4. 4.
    Zhang YS (1983) Acta Metall Sin 19:A262 (in Chinese)Google Scholar
  5. 5.
    Brüx U, Frommeyer G, Gràssel O, Meyer LW, Weise A (2002) Steel Res 73:294CrossRefGoogle Scholar
  6. 6.
    Frommeyer G, Brüx U (2006) Steel Res 77:627CrossRefGoogle Scholar
  7. 7.
    Tian X, Zhang YS, Shih CH (1986) Acta Metall Sin 22:A101 (in Chinese)Google Scholar
  8. 8.
    Sato K, Ichinase M, Hirotsu Y, Inoue Y (1989) ISIJ Inter 29:868. doi: https://doi.org/10.2355/isijinternational.29.868 CrossRefGoogle Scholar
  9. 9.
    Takaki S, Furuya T, Tokunaga Y (1990) ISIJ Inter 30:632. doi: https://doi.org/10.2355/isijinternational.30.632 CrossRefGoogle Scholar
  10. 10.
    Tian X, Zhang YS (1993) Scr Metall Mater 28:1219. doi: https://doi.org/10.1016/0956-716X(93)90457-4 CrossRefGoogle Scholar
  11. 11.
    Zhu XM, Zhang YS (1998) Corrosion 54:3CrossRefGoogle Scholar
  12. 12.
    Zhang YS, Lu X, Tian X, Qin ZX (2002) Mater Sci Eng A 334:19. doi: https://doi.org/10.1016/S0921-5093(01)01781-6 CrossRefGoogle Scholar
  13. 13.
    Tian X, Tian R, Wei X, Zhang Y (2004) Can Metall Q 43:183CrossRefGoogle Scholar
  14. 14.
    Zhang YS (1985) Acta Metall Sin 21:A295 (in Chinese)Google Scholar
  15. 15.
    Zhang YS (1986) Acta Metall Sin 22:A470 (in Chinese)Google Scholar
  16. 16.
    Sato A, Yamaji Y, Mori T (1986) Acta Metall 34:287. doi: https://doi.org/10.1016/0001-6160(86)90199-9 CrossRefGoogle Scholar
  17. 17.
    Yang JH, Chen H, Wayman CM (1992) Metall Trans 23A:1445CrossRefGoogle Scholar
  18. 18.
    Yang WS, Wan CM (1990) J Mater Sci 25:1821. doi: https://doi.org/10.1007/BF01045392 CrossRefGoogle Scholar
  19. 19.
    Oh BW, Cho SJ, Kim YG et al (1995) Mater Sci Eng A 197:147. doi: https://doi.org/10.1016/0921-5093(94)09751-8 CrossRefGoogle Scholar
  20. 20.
    Ruff AW Jr (1970) Metall Trans 1:2391Google Scholar
  21. 21.
    Gallagher PCJ (1970) Metall Trans 1:2429Google Scholar
  22. 22.
    Adler RPI, Otte HM, Wagner CNJ (1970) Metall Trans 1:2375Google Scholar
  23. 23.
    Reed RP, Schramm RE (1974) J Appl Phys 45:4705. doi: https://doi.org/10.1063/1.1663122 CrossRefGoogle Scholar
  24. 24.
    Schramm RE, Reed RP (1975) Metall Trans 6A:1345CrossRefGoogle Scholar
  25. 25.
    Mukherjee P, Sarkar A, Barat P et al (2004) Acta Mater 52:5687. doi: https://doi.org/10.1016/j.actamat.2004.08.030 CrossRefGoogle Scholar
  26. 26.
    Kapoor K, Lahiri D et al (2005) Mater Charact 54:131. doi: https://doi.org/10.1016/j.matchar.2004.09.009 CrossRefGoogle Scholar
  27. 27.
    Dey SN, Chatterjee P, Sen Gupta SP (2005) Acta Mater 53:4635. doi: https://doi.org/10.1016/j.actamat.2005.06.017 CrossRefGoogle Scholar
  28. 28.
    Warren RE (1969) X-ray diffraction. Addison-Wesley, Reading, MA, p 251Google Scholar
  29. 29.
    Hirth JP (1970) Metall Trans 1:2367. doi: https://doi.org/10.1007/BF02642816 CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Ferreira PJ, Müllner P (1998) Acta Mater 46:4479. doi: https://doi.org/10.1016/S1359-6454(98)00155-4 CrossRefGoogle Scholar
  32. 32.
    Lee YK, Choi CS (2000) Metall Mater Trans 31A:355. doi: https://doi.org/10.1007/s11661-000-0271-3 CrossRefGoogle Scholar
  33. 33.
    Olson GB, Cohen M (1976) Metall Trans 7A:1897Google Scholar
  34. 34.
    Ishida K (1976) Phys Stat Solids 36:717. doi: https://doi.org/10.1002/pssa.2210360233 CrossRefGoogle Scholar
  35. 35.
    Hirllert M, Jar M (1978) Calphad 2:227. doi: https://doi.org/10.1016/0364-5916(78)90011-1 CrossRefGoogle Scholar
  36. 36.
    Tian X, Zhang YS (1991) Mater Sci Prog 5:48 (in Chinese)Google Scholar
  37. 37.
    Stepakoff GL, Kaufman L (1968) Acta Metall 16:13. doi: https://doi.org/10.1016/0001-6160(68)90066-7 CrossRefGoogle Scholar
  38. 38.
    Breedis JF, Kaufman L (1971) Metall Trans 2:2359. doi: https://doi.org/10.1007/BF02814874 CrossRefGoogle Scholar
  39. 39.
    Kaufman L, Nesor H (1978) Calphad 2:295. doi: https://doi.org/10.1016/0364-5916(78)90018-4 CrossRefGoogle Scholar
  40. 40.
    Murr LE (1975) Interfacial phenomenon in metal and alloys. Addison-Wesley, Reading, MA, p 130Google Scholar
  41. 41.
    Ericsson T (1969) Acta Metall 14:1073. doi: https://doi.org/10.1016/0001-6160(66)90195-7 CrossRefGoogle Scholar
  42. 42.
    Ishida K, Nishizawa T (1974) Trans Jpn Inst Met 15:225CrossRefGoogle Scholar
  43. 43.
    Fernández Guillerment A (1987) High Temp High Press 19:477Google Scholar
  44. 44.
    Petrov Yu N, Yakubtsov IA (1986) Phys Met Metall 62(2):34Google Scholar
  45. 45.
    Ohno H, Mekata M (1971) J Phys Soc Jpn 31:102. doi: https://doi.org/10.1143/JPSJ.31.102 CrossRefGoogle Scholar
  46. 46.
    Zhang YS (1988) J Phys Met Phys 18:L229CrossRefGoogle Scholar
  47. 47.
    Qin ZX, Zhang YS (1998) Hyperfine Interact 116:225. doi: https://doi.org/10.1023/A:1012670705310 CrossRefGoogle Scholar
  48. 48.
    Remy L, Pineau A (1977) Mater Sci Eng 28:99. doi: https://doi.org/10.1016/0025-5416(77)90093-3 CrossRefGoogle Scholar
  49. 49.
    Umebayashi H, Ishikawa Y (1966) J Phys Soc Jpn 21:1281. doi: https://doi.org/10.1143/JPSJ.21.1281 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringDalian Jiaotong UniversityDalianChina

Personalised recommendations