Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6353–6358 | Cite as

Effects of aerosol heating rate on the properties of aggregates of lead zirconate titanate nanoparticles produced by spray pyrolysis

  • Andrew J. Scott
  • William Nimmo
  • Ryan Scott
  • Andrew P. Brown
  • Steven J. MilneEmail author
Article

Abstract

The dependence of the shape and size distribution of aggregates of lead zirconate titanate nanoparticles prepared by spray pyrolysis of a sol–gel precursor solution is reported. Decreasing the average heating rate from 300 to 160 °C s−1 in the sub-200 °C section of the reactor decreased the proportion of non-spherical particle aggregates and decreased the maximum size from ~10 to ~5 μm. Microtome sectioning revealed an internal structure composed of <100 nm primary particles. Both solid and hollow particle aggregates were present.

Keywords

Spray Pyrolysis Secondary Electron Image Hollow Particle Maximum Particle Size Heating Profile 

Notes

Acknowledgement

The authors would like to thank the UK Engineering and Physical Sciences Research Council for financial support.

References

  1. 1.
    Messing GL, Zhang S-C, Jayanthi GV (1993) J Am Ceram Soc 76:2707. doi: https://doi.org/10.1111/j.1151-2916.1993.tb04007.x CrossRefGoogle Scholar
  2. 2.
    Ruthner MJ (1983) In: Vincenzini P (ed) Ceramic powders. Elsevier, Amsterdam, p 515Google Scholar
  3. 3.
    Milosovic B, Mirkovic MK, Uskokovic DP (1996) J Am Ceram Soc 79:1720. doi: https://doi.org/10.1111/j.1151-2916.1996.tb08794.x CrossRefGoogle Scholar
  4. 4.
    Janackovic D, Jokanovic V, Kostic-Gvozdenovic L, Zivkovic L, Uskokovic D (1996) J Mater Res 11:1706. doi: https://doi.org/10.1557/JMR.1996.0214 CrossRefGoogle Scholar
  5. 5.
    Lenggoro IW, Hata T, Iskandar F, Lunden MM, Okuyama K (2000) J Mater Res 15:733. doi: https://doi.org/10.1557/JMR.2000.0106 CrossRefGoogle Scholar
  6. 6.
    Zhang SC, Messing GL, Borden M (1990) J Am Ceram Soc 73:61. doi: https://doi.org/10.1111/j.1151-2916.1990.tb05091.x CrossRefGoogle Scholar
  7. 7.
    Nimmo W, Ali NJ, Brydson R, Calvert C, Hampartsoumian E, Hind D et al (2003) J Am Ceram Soc 86:1474. doi: https://doi.org/10.1111/j.1151-2916.2003.tb03499.x CrossRefGoogle Scholar
  8. 8.
    Nimmo W, Ali NJ, Brydson R, Calvert C, Milne SJ (2005) J Am Ceram Soc 88:839. doi: https://doi.org/10.1111/j.1551-2916.2005.00184.x CrossRefGoogle Scholar
  9. 9.
    Nimmo W, Hind D, Ali NJ, Hampartsoumian E, Milne SJ (2002) J Mater Sci 37:3381. doi: https://doi.org/10.1023/A:1016549325319 CrossRefGoogle Scholar
  10. 10.
    Chin JS, Lefebvre AH (1995) J Eng Gas Turbines Power 117:266. doi: https://doi.org/10.1115/1.2814090 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrew J. Scott
    • 1
  • William Nimmo
    • 2
  • Ryan Scott
    • 1
  • Andrew P. Brown
    • 1
  • Steven J. Milne
    • 1
    Email author
  1. 1.Institute for Materials ResearchUniversity of LeedsLeedsUK
  2. 2.Energy and Resources InstituteUniversity of LeedsLeedsUK

Personalised recommendations