Journal of Materials Science

, Volume 43, Issue 18, pp 6272–6277 | Cite as

Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite

  • A. Dehghan-ManshadiEmail author
  • P. D. Hodgson


This work evaluates the effect of co-existence of a large volume fraction of δ-ferrite on the hot deformation and dynamic recrystallization (DRX) of austenite using comparative hot torsion tests on AISI 304 austenitic and 2205 duplex stainless steels. The comparison was performed under similar deformation conditions (i.e. temperature and strain rate) and also under similar Zener-Hollomon, Z, values. The torsion data were combined with electron backscatter diffraction (EBSD) analysis to study the microstructure development. The results imply a considerable difference between DRX mechanisms, austenite grain sizes and also DRX kinetics of two steels. Whereas austenitic stainless steel shows the start of DRX at very low strains and then development of that microstructure based on the necklace structure, the DRX phenomena in the austenite phase of duplex structure does not proceed to a very high fraction. Also, the DRX kinetics in the austenitic steel are much higher than the austenite phase of the duplex steel. The results suggest that at a similar deformation condition the DRX grain size of austenitic steel is almost three times larger than the DRX grains of austenite phase in duplex steel. Similarly, the ratio of DRX grain size in the austenitic to the duplex structure at the same Z values is about 1.5.


Ferrite Austenite Austenitic Stainless Steel Austenitic Steel Duplex Stainless Steel 


  1. 1.
    Belyakov A, Miura H, Sakai T (1998) Mater Sci Eng A 255:139. doi: CrossRefGoogle Scholar
  2. 2.
    Dehghan-Manshadi A, Beladi H, Barnett MR, Hodgson PD (2004) Mater Forum 467–470:1163CrossRefGoogle Scholar
  3. 3.
    Ryan ND, McQueen HJ (1990) Can Metall Quart 29:147CrossRefGoogle Scholar
  4. 4.
    Salvatori I, Inoue T, Nagai K (2002) ISIJ Int 42:744. doi: CrossRefGoogle Scholar
  5. 5.
    Sakai T (1995) J Mater Process Technol 53:349. doi: CrossRefGoogle Scholar
  6. 6.
    Sellars CM (1979) In: Sellars CM, Davies CHJ (eds) Hot working and forming process. The Metal Society, LondonGoogle Scholar
  7. 7.
    Sakai T, Miura H (1996) In: McQueen HJ, Konopleva EV, Ryan ND (eds) Hot workability of steels and light alloys-composites. The Metallurgical Society of CIM, MontrealGoogle Scholar
  8. 8.
    Hodgson PD, Gloss RE, Dunlop GL (1990) In: Kassner ME (ed) 32nd mechanical working and steel processing. Iss-AIME, WarrendaleGoogle Scholar
  9. 9.
    Karjalainen LP, Maccagno TM, Jonas JJ (1995) ISIJ Int 35:1523. doi: CrossRefGoogle Scholar
  10. 10.
    Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Mater Sci Eng A 458:664. doi: CrossRefGoogle Scholar
  11. 11.
    Ponge D, Gottstein G (1998) Acta Mater 46:69. doi: CrossRefGoogle Scholar
  12. 12.
    Sah JP, Richardson CJ, Sellars CM (1974) Metal Sci 8:325CrossRefGoogle Scholar
  13. 13.
    Hornbogen E, Koster U (1980) In: Hansen N, Jones AR, Leffers T (eds) Recrystallization and grain growth of multi-phase and particle containing materials. Riso National Laboratory, RoskildeGoogle Scholar
  14. 14.
    Maki T, Furuhara T, Tsuzaki K (2001) ISIJ Int 41:571. doi: CrossRefGoogle Scholar
  15. 15.
    Belyakov A, Kimura Y, Tsuzaki K (2006) Acta Mater 54:2521. doi: CrossRefGoogle Scholar
  16. 16.
    Tsuzaki K, Xiaoxu H, Maki T (1996) Acta Mater 44:4491. doi: CrossRefGoogle Scholar
  17. 17.
    Dehghan-Manshadi A, Barnett MR, Hodgson PD (2007) Mater Sci Technol 23:1478. doi: CrossRefGoogle Scholar
  18. 18.
    Iza-Mendia A, Pinol-Juez A, Urcola JJ, Gutierrez I (1998) Metall Mater Trans A 29:2975. doi: CrossRefGoogle Scholar
  19. 19.
    Barteri M, Mecozzi MG (1994) In: Gooch TG (ed) Duplex stainless steel. Abington Publishing, GlasgowGoogle Scholar
  20. 20.
    Weiss H, Skinner DH, Everett JR (1973) J Phys E 6:709. doi: CrossRefGoogle Scholar
  21. 21.
    Dehghan-Manshadi A (2007) The evolution of recrystallization during and following hot deformation. PhD Thesis, Deakin University, Geelong, Victoria, AustraliaGoogle Scholar
  22. 22.
    Higginson RL, Sellars CM (2003) Worked examples in quantitive metallography. Maney Publishing, LondonGoogle Scholar
  23. 23.
    Belyakov A, Kimura Y, Tsuzaki K (2005) Mater Sci Eng A 403:249. doi: CrossRefGoogle Scholar
  24. 24.
    Cizek P, Safek V, Cerny V (1989) Hutnicke Listy 43:99Google Scholar
  25. 25.
    Gao F, Xu Y, Xia K (2000) Metall Mater Trans A 31:21. doi: CrossRefGoogle Scholar
  26. 26.
    Konopleva EV, Sauerborn M, McQueen HJ, Ryan ND, Zaripova RG (1997) Mater Sci Eng A 234–236:826. doi: CrossRefGoogle Scholar
  27. 27.
    Evangelista E, McQueen HJ, Niewczas M, Cabibbo M (2004) Can Metall Quart 43:339CrossRefGoogle Scholar
  28. 28.
    Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Metall Mater Trans A 31:1359. doi: CrossRefGoogle Scholar
  29. 29.
    Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Pergamon, OxfordGoogle Scholar
  30. 30.
    Gourdet S, Montheillet F (2003) Acta Mater 51:2658. doi: CrossRefGoogle Scholar
  31. 31.
    Sakai T, Jonas JJ (1984) Acta Metall 32:189. doi: CrossRefGoogle Scholar
  32. 32.
    Belyakov A, Tsuzaki K, Miura H, Sakai T (2003) Acta Mater 51:847. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of WollongongWollongongAustralia
  2. 2.Centre for Material and Fibre InnovationDeakin UniversityWaurn PondsAustralia

Personalised recommendations