Journal of Materials Science

, Volume 43, Issue 18, pp 6285–6288 | Cite as

Preparation and characterization of Pt-polypyrrole nanocomposite for electrochemical reduction of oxygen

  • Liu Jiwei
  • Qiu Jingxia
  • Yuqing MiaoEmail author
  • Jianrong Chen


An easy and simple method of one-step reaction was employed to synthesize the platinum-adsorbed polypyrrole nanocomposite (Pt-PPy). The prepared nanocomposite materials were characterized using UV–vis absorption spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and cyclic voltammetry. Polypyrrole within nanocomposite could crosslink to improve its stability on the Au substrates. O2 reduction was performed at Au electrodes modified Pt-PPy in O2-saturated 0.5 M H2SO4 solution. The results clearly show that modification of Pt-PPy nanocomposite results in the enhancement of the electrocatalytic reduction of oxygen. The nanocomposite may provide a novel electrode material for application in fuel cells and oxygen sensors.


Oxygen Reduction Reaction Polypyrrole Platinum Nanoparticles Hexadecyl Trimethyl Ammonium Bromide K2PtCl6 



This material is based upon work funded by the National Natural Science Foundation of China (Grant No. 90406016), the Scientific Program of Zhejiang province in China (No. 2005C21099), and Zhejiang Province Natural Science Foundation.


  1. 1.
    Chen ZW, Waje M, Li WZ, Yan YS (2007) Angew Chem Int Ed 46:4060. doi: CrossRefGoogle Scholar
  2. 2.
    Zhang JL, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) J Am Chem Soc 127:12480. doi: CrossRefGoogle Scholar
  3. 3.
    Maye MM, Kariuki NN, Luo J, Han L, Njoki P et al (2004) Gold Bull 37(3–4):217CrossRefGoogle Scholar
  4. 4.
    Zhao D, Xu BQ (2006) Angew Chem Int Ed 45:4955. doi: CrossRefGoogle Scholar
  5. 5.
    Metz KM, Goel D, Hamers RJ (2007) J Phys Chem C 111(20):7260. doi: CrossRefGoogle Scholar
  6. 6.
    Cui HF, Ye JS, Zhang WD, Wang J, Sheu FS (2005) J Electroanal Chem 577:295. doi: CrossRefGoogle Scholar
  7. 7.
    Vercelli B, Zotti G (2006) Chem Mater 18:3754. doi: CrossRefGoogle Scholar
  8. 8.
    Jang J, Bae J, Park E (2006) Adv Mater 18:354. doi: CrossRefGoogle Scholar
  9. 9.
    Choi SJ, Park SM (2000) Adv Mater 12:1547. doi :10.1002/1521-4095(200010)12:20<1547::AID-ADMA1547>3.0.CO;2-1CrossRefGoogle Scholar
  10. 10.
    Valsesia A, Lisboa P, Colpo P, Rossi F (2006) Anal Chem 78:7588. doi: CrossRefGoogle Scholar
  11. 11.
    Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochim Acta 51:6025. doi: CrossRefGoogle Scholar
  12. 12.
    Wuang SC, Neoh KG, Kang ET, Pack DW, Leckband DE (2007) J Mater Chem 17:3354. doi: CrossRefGoogle Scholar
  13. 13.
    Ferreira M, Zucolotto V, Huguenin F, Torresi RM, Oliveira ON (2002) J Nanosci Nanotech 2:29. doi: CrossRefGoogle Scholar
  14. 14.
    Liu YC, Chuang TC (2003) J Phys Chem B 107:12383. doi: CrossRefGoogle Scholar
  15. 15.
    Pintér E, Patakfalvi R, Fülei T, Gingl Z, Dékány I, Visy C (2005) J Phys Chem B 109:17474. doi: CrossRefGoogle Scholar
  16. 16.
    Sigaud M, Li M, Chardon-Noblat S, Aires FJCS, Soldo-Olivier Y, Simon JP et al (2004) J Mater Chem 14:2606. doi: CrossRefGoogle Scholar
  17. 17.
    Selvaraj V, Alagar M, Kumar KS (2007) Appl Catal B-Environ 75:129. doi: CrossRefGoogle Scholar
  18. 18.
    Rinaldi AW, Kunita MH, Santos MJL, Radovanovic E, Rubira AF, Girotto EM (2005) Eur Polym J 41(11):2711CrossRefGoogle Scholar
  19. 19.
    Martins CR, De Almeida YM, Do Nascimento GC, De Azevedo WM (2006) J Mater Sci 41(22):7413. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Liu Jiwei
    • 1
  • Qiu Jingxia
    • 1
  • Yuqing Miao
    • 1
  • Jianrong Chen
    • 1
  1. 1.Zhejiang Key Laboratory for Reactive Chemistry on Solid SurfacesCollege of Chemistry and Life Science, Zhejiang Normal UniversityJinhuaChina

Personalised recommendations