Journal of Materials Science

, Volume 43, Issue 17, pp 5705–5711 | Cite as

Effect of thermomechanical processing on mechanical behavior and microstructure evolution of C–Mn multiphase high strength cold rolled steel

  • Élida G. Neves
  • Ronaldo N. Barbosa
  • Elena V. Pereloma
  • Dagoberto B. SantosEmail author


Multiphase (MP) steels have complex microstructures containing polygonal ferrite, martensite, bainite, carbide, and small amounts of retained austenite. This mixture of phases and constituents is responsible for a good combination of strength and ductility in this class of steels. The present work shows how different annealing parameters can be used to create the suitable microstructure to improve mechanical properties of MP steels. Samples were first heated to 740, 760, or 780 °C, held for 300 s, and then quickly cooled to 600 or 500 °C. They were then soaked for another 300 s and finally accelerated cooled in the range of 10–30 °C s−1. The microstructures were examined at the end of each processing route using optical, scanning, and transmission electron microscopy. Hardness values were determined for all conditions. Analysis of the available data allowed to establish the simple and yet useful quantitative relationship between the microstructural parameters, cooling rates, and hardness of the steel.


Ferrite Austenite Martensite Bainite Pearlite 


  1. 1.
    Fekete JR (2005) In: Proc niobium microalloyed steel for automotive applications. Araxá, Brazil, TMS, p 107Google Scholar
  2. 2.
    DeArdo AJ (2003) Mater Sci Forum 426–432:49CrossRefGoogle Scholar
  3. 3.
    Mesplont C, De Cooman BC (2002) Iron Steel 23:39Google Scholar
  4. 4.
    Lewellyn DT, Hillis DJ (1996) Iron Steelm 23:471Google Scholar
  5. 5.
    Pichler A, Traint S, Arnoldner G, Werner E, Pippan R, Stiaszny P (2000) In: Proc ‘42° mechanical working and steel processing’, Toronto, Canada, October 22–25, p 573Google Scholar
  6. 6.
    Cota AB, Barbosa R, Santos DB (2000) J Mater Process Tech 100:156. doi: CrossRefGoogle Scholar
  7. 7.
    Silva F, Lopes NIA, Santos DB (2006) Mater Charact 56:3. doi: CrossRefGoogle Scholar
  8. 8.
    Honeycombe RWK, Bhadeshia HKDH (1995) Steels, microstructure and properties, 2nd edn. Edward Arnold, London, EnglandGoogle Scholar
  9. 9.
    Huang J, Poole WJ, Militzer M (2004) Metall Mater Trans A 35:3363. doi: CrossRefGoogle Scholar
  10. 10.
    Ramos LF, Matlock DK, Krauss G (1979) Metall Trans A 10:259. doi: CrossRefGoogle Scholar
  11. 11.
    Speich GR, Demarest VA, Miller ML (1981) Metall Trans A 12:1419. doi: CrossRefGoogle Scholar
  12. 12.
    Bunge H-J, Vlad CM, Kopp H-H (1984) Arch Eisenh 55:163Google Scholar
  13. 13.
    Estay S, Cheng L, Purdy GR (1984) Can Metall Q 23:121CrossRefGoogle Scholar
  14. 14.
    Demir B, Erdoðan M (2008) J Mater Process Tech. doi: CrossRefGoogle Scholar
  15. 15.
    Rao BVN, Rashid MS (1983) Metallography 16:19. doi: CrossRefGoogle Scholar
  16. 16.
    Qu J, Dabboussi W, Hassani F, Yue S (2005) ISIJ Int 45:1741. doi: CrossRefGoogle Scholar
  17. 17.
    Verdeja JI, PeroSanz JA, Asensio J (2005) Mater Sci Forum 500–501:429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Élida G. Neves
    • 1
  • Ronaldo N. Barbosa
    • 1
  • Elena V. Pereloma
    • 2
  • Dagoberto B. Santos
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.BlueScope Steel Metallurgy Centre, Faculty of Engineering, School of Mechanical, Materials and Mechatronics EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations