Journal of Materials Science

, Volume 43, Issue 18, pp 6359–6365 | Cite as

Facile synthesis of ordered mesoporous silica with high γ-Fe2O3 loading via sol-gel process

  • Jiansheng Li
  • Y. S. LinEmail author


A series of ordered mesoporous silica loaded with iron oxide was synthesized by facile one-step sol-gel route using Pluronic P123 as the template, tetraethylorthosilicate as the silica source, and hydrated iron nitrite as the precursor under acid conditions. The as-synthesized materials with Fe/Si molar ratio ranging from 0.1 to 0.8 were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and N2 adsorption porosimetry. All samples possess ordered hexagonal mesoporous structure similar to SBA-15, with a high surface area, large pore volume, and uniform pore size. Although higher iron content causes a distortion of hexagonal ordering structure to some extent, the materials still maintain the ordered mesopore structure even with Fe/Si molar ratio as high as 0.8. Pore structure and TEM data suggest that iron oxide nanoparticles are buried within the silica wall, and increasing the iron oxide loading has little effects on the pore structure of the mesoporous silica. VSM results show as-synthesized samples exhibit superparamagnetic behavior.


Mesoporous Silica Iron Oxide Nanoparticles Select Area Electron Diffraction Pattern Silica Matrix Silica Sample 



This work was supported by Petroleum Research Fund (Administered by the American Chemical Society), Natural Science Foundation of Jiangsu Province (grant no.BK2006205), and Young Scholar Science Foundation of Nanjing University of Science & Technology (grant no.NJUST 200502). JSL is grateful to China Scholarship Council for a fellowship to support his visit to ASU.


  1. 1.
    Ensling J, Gütlich P, Klinger R, Meisel W, Jachow H, Schwab H (1998) Hyperfine Interact 111:143. doi: CrossRefGoogle Scholar
  2. 2.
    Zhu Q, Teeffelen R, Santen R, Hesen E (2004) J Catal 221:575. doi: CrossRefGoogle Scholar
  3. 3.
    Depeyrot J, Sousa EC, Aquino R, Tourinho FA, Dubois E, Bacri JC et al (2000) J Magn Magn Mater 252:375. doi: CrossRefGoogle Scholar
  4. 4.
    Zayat MZ, del Monte F, Morales MD, Rosa G, Guerrero H, Serna CJ et al (2003) Adv Mater 15:1809. doi: CrossRefGoogle Scholar
  5. 5.
    Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T et al (2004) Free Radic Biol Med 36:976. doi: CrossRefGoogle Scholar
  6. 6.
    McMichael RD, Schull RD, Swartzendruber LJ, Bennett LH, Watson RE (1992) J Magn Magn Mater 111:29. doi: CrossRefGoogle Scholar
  7. 7.
    Josephson L, Tsung CH, Moore A, Weissleder R (1999) Bioconjug Chem 10:186. doi: CrossRefGoogle Scholar
  8. 8.
    Nagano H, Machida Y, Iwata M, Imada T, Noguchi Y, Matsumoto A et al (1997) Int J Pharm 147:119. doi: CrossRefGoogle Scholar
  9. 9.
    Ayyub P, Multani M, Barma M, Polkar VR, Vijayaraghavan R (1988) J Phys C Solid State Phys 21:2229. doi: CrossRefGoogle Scholar
  10. 10.
    Niznansky D (1997) J Sol-gel Sci Tech (Paris) 8:615Google Scholar
  11. 11.
    Ennas G, Musinu A, Piccaluga G, Zedda D (1998) Chem Mater 10:495. doi: CrossRefGoogle Scholar
  12. 12.
    Jitianu A, Crisan M, Meghea A, Rau I, Zaharescu M (2002) J Mater Chem 12:1401. doi: CrossRefGoogle Scholar
  13. 13.
    Zheng T, Pang J, Tan G, He J, McPherson GL, Lu Y et al (2007) Langmuir 23:5143. doi: CrossRefGoogle Scholar
  14. 14.
    Wingen A, Anastasievic N, Hollnagel A, Werner D, Schüth F (2000) J Catal 193:248. doi: CrossRefGoogle Scholar
  15. 15.
    Fröba M, Köhn R, Bouffaud G (1999) Chem Mater 11:2858. doi: CrossRefGoogle Scholar
  16. 16.
    Tsoncheva T, Rosenholm J, Teixeira CV, Dimitrov M, Linden M, Minchev C (2006) Microporous Mesoporous Mater 89:209. doi: CrossRefGoogle Scholar
  17. 17.
    Wang Y, Zhang Q, Shishido T, Takehira K (2002) J Catal 209:186. doi: CrossRefGoogle Scholar
  18. 18.
    Lu Y, Zheng J, Liu J, Mu J (2007) Microporous Mesoporous Mater 106:28. doi: CrossRefGoogle Scholar
  19. 19.
    Shao Y, Wang L, Zhang J, Anpo M (2006) J Photochem Photobiol A 180:59. doi: CrossRefGoogle Scholar
  20. 20.
    Li Y, Feng Z, Lian Y, Sun K, Zhang L, Jia G et al (2005) Microporous Mesoporous Mater 84:41. doi: CrossRefGoogle Scholar
  21. 21.
    Hamdy MS, Mul G, Jansen JC, Ebaid A, Shan Z, Overweg AR et al (2005) Catal Today 100:255. doi: CrossRefGoogle Scholar
  22. 22.
    Han Y, Meng X, Guan H, Yu Y, Zhao L, Xu X et al (2003) Microporous Mesoporous Mater 57:191. doi: CrossRefGoogle Scholar
  23. 23.
    Garcia C, Zhang Y, Disalvo F, Wiesner U (2003) Angew Chem Int Ed 42:1526. doi: CrossRefGoogle Scholar
  24. 24.
    Huesing N, Launay B, Kickelbick G, Gross S, Armelao L, Bottaro G et al (2003) Appl Catal A 254:297. doi: CrossRefGoogle Scholar
  25. 25.
    Supplit R, Hüsing N, Bertagnolli H, Bauer M, Kessler V, Seisenbaeva GA, Gross S et al (2006) J Mater Chem 16:4443. doi: CrossRefGoogle Scholar
  26. 26.
    Yang H, Lu Q, Gao F, Shi Q, Yan Y, Zhang F et al (2005) Adv Funct Mater 15:1377. doi: CrossRefGoogle Scholar
  27. 27.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF et al (1998) Science 279:548. doi: CrossRefGoogle Scholar
  28. 28.
    Machala L, Zboril R, Gedanken A (2007) J Phys Chem B 111:4003. doi: CrossRefGoogle Scholar
  29. 29.
    Delahaye E, Escax V, El Hassan N, Davidson A, Aquino R, Dupuis V et al (2006) J Phys Chem B 110:26001. doi: CrossRefGoogle Scholar
  30. 30.
    Hodgkins RP, Ahniyaz A, Parekh K, Belova LM, Bergström L (2007) Langmuir 23:8838. doi: CrossRefGoogle Scholar
  31. 31.
    Warren BE (1969) X-ray diffraction. Dover Publications, New YorkGoogle Scholar
  32. 32.
    Jing Z (2006) Mater Sci Eng A 441:176. doi: CrossRefGoogle Scholar
  33. 33.
    Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J et al (1985) Pure Appl Chem 57:603. doi: CrossRefGoogle Scholar
  34. 34.
    Fotou GP, Lin YS, Pratsinis SE (1995) J Mater Sci 30:2803. doi: CrossRefGoogle Scholar
  35. 35.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  36. 36.
    MacLachlan MJ, Ginzburg M, Coombs N, Raju NP, Greedan JE, Ozin GA et al (2000) J Am Chem Soc 122:3878. doi: CrossRefGoogle Scholar
  37. 37.
    Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguli BN, Mehrotra V et al (1992) Science 257:219. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Environmental Science & EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations