Journal of Materials Science

, Volume 43, Issue 18, pp 6324–6330 | Cite as

Hot deformation of AA6082-T4 aluminum alloy

  • Ehab A. El-Danaf
  • Abdulhakim A. AlMajid
  • Mahmoud S. Soliman


High-temperature tensile deformation of 6082-T4 Al alloy was conducted in the range of 623–773 K at various strain rates in the range of 5 × 10−5 to 2 × 10−2 s−1. Stress dependence of the strain rate revealed a stress exponent, n of 7 throughout the ranges of temperatures and strain rates tested. This stress exponent is higher than what is usually observed in Al–Mg alloys under similar experimental conditions, which implies the presence of threshold stress. This behavior results from dislocation interaction with second phase particles (Mg2Si). The experimental threshold stress values were calculated, based on the finding that creep rate is viscous glide controlled, based on creep tests conducted on binary Al–1Mg at 673 K, that gave n a value of 3. The threshold stress (σo) values were seen to decrease exponentially with temperature. The apparent activation energy for 6082-T4 was calculated to be about 245 kJ mol−1, which is higher than the activation energy for self-diffusion in Al (Qd = 143 kJ mol−1) and for the diffusion of Mg in Al (115–130 kJ mol−1). By incorporating the threshold stress in the analysis, the true activation energy was calculated to be about 107 kJ mol−1. Analysis of strain rate dependence in terms of the effective stress (σ − σo) using normalized parameters, revealed a single type of deformation behavior. A plot of normalized strain rate (\( \dot{\varepsilon }kT/DGb \)) versus normalized effective stress (σ − σo)/G, on a double logarithmic scale, gave an n value of 3.


Effective Stress Apparent Activation Energy Threshold Stress Stress Exponent Initial Strain Rate 



This work was supported by the Research Center at King Saud University, College of Engineering, and SABIC grants (grant # 428/38). This support is highly acknowledged.


  1. 1.
    McQueen HJ, Jones JJ (1975) In: Arsenault RJ (ed) Plastic deformation of materials. Academic Press, New YorkGoogle Scholar
  2. 2.
    Nakashima H, Iwasaki K, Goto S, Yoshinaga H (1990) Mater Trans JIM 31:35CrossRefGoogle Scholar
  3. 3.
    Avramovic-Cingara G, Perovic DD, McQueen HJ (1996) Metall Mater Trans A 27A:3478. doi: CrossRefGoogle Scholar
  4. 4.
    Taleff EM, Lesuer DR, Wadsworth J (1996) Metll Mater Trans A 27A:343. doi: CrossRefGoogle Scholar
  5. 5.
    Taleff EM, Nevland PJ, Krajewski PE (2001) Metall Mater Trans A 32A:1119. doi: CrossRefGoogle Scholar
  6. 6.
    Zhang H, McQueen HJ (2001) Mater Sci Eng A 319–321:711. doi: CrossRefGoogle Scholar
  7. 7.
    Kaibyshev R, Sitdikov O, Mazurina I, Lesuer DR (2002) Mater Sci Eng A 334:104. doi: CrossRefGoogle Scholar
  8. 8.
    Marquis EA, Seidman DN, Dunand DC (2003) Acta Mater 51:4751. doi: CrossRefGoogle Scholar
  9. 9.
    Kaibyshev R, Musin F, Avtokratova E, Motohashi Y (2005) Mater Sci Eng A 392:373. doi: CrossRefGoogle Scholar
  10. 10.
    McQueen HJ (2002) Metall Mater Trans A 33A:345. doi: CrossRefGoogle Scholar
  11. 11.
    McQueen HJ, Kassner ME (2005) Mater Sci Eng A 410–411:58. doi: CrossRefGoogle Scholar
  12. 12.
    Kovacs-Csetenyi E, Chinh NQ, Kovacs I (1996) Mater Sci Forum 217–222:1175CrossRefGoogle Scholar
  13. 13.
    Ronning B, Nord-Varhaung K, Furu T, Nes E (2000) Mater Sci Forum 331–337:571CrossRefGoogle Scholar
  14. 14.
    Spigarelli S, Evangelista E, McQueen HJ (2003) Scr Mater 49:179. doi: CrossRefGoogle Scholar
  15. 15.
    Mrowka-Nowotnik G, Sieniawski J (2005) J Mater Processing Technology 162–163:367. doi: CrossRefGoogle Scholar
  16. 16.
    Gracio JJ, Barlat F, Rauch EF, Jones PT, Neto VF, Lopes AB (2004) Int J Plast 20:427. doi: CrossRefGoogle Scholar
  17. 17.
    Kassner ME, Perez-Prado MT (2000) Prog Mater Sci 45:1. doi: CrossRefGoogle Scholar
  18. 18.
    Mohamed FA, Langdon TG (1974) Acta Metall 22:779. doi: CrossRefGoogle Scholar
  19. 19.
    Yavari P, Mohamed FA, Langdon TG (1981) Acta Metall 29:1495. doi: CrossRefGoogle Scholar
  20. 20.
    Soliman MS, Mohamed FA (1982) Mater Sci Eng A 55:111. doi: CrossRefGoogle Scholar
  21. 21.
    Oikawa H, Honda K, Ito S (1984) Mater Sci Eng A 64:237. doi: CrossRefGoogle Scholar
  22. 22.
    Oikawa H, Sato H, Maruyama K (1985) Mater Sci Eng A 75:21. doi: CrossRefGoogle Scholar
  23. 23.
    Sato H, Oikawa H (1988) Scr Metall 22:87. doi: CrossRefGoogle Scholar
  24. 24.
    Chaudhury B, Mohamed FA (1988) Mater Sci Eng A 101:13. doi: Google Scholar
  25. 25.
    Chaudhury B, Mohamed FA (1987) Metall Trans A 18:2105. doi: CrossRefGoogle Scholar
  26. 26.
    Soliman MS (1995) Mater Sci Eng A 201:111. doi: CrossRefGoogle Scholar
  27. 27.
    Mohamed FA (1983) Mater Sci Eng A 61:149. doi: CrossRefGoogle Scholar
  28. 28.
    Soliman MS, Mohamed FA (1984) Metall Trans A 15A:1893CrossRefGoogle Scholar
  29. 29.
    Mohamed FA (1998) Mater Sci Eng A 245:242. doi: CrossRefGoogle Scholar
  30. 30.
    Evangelista E, Spigarelli S (2002) Metall Mater Trans A 33A:373. doi: CrossRefGoogle Scholar
  31. 31.
    Spigarelli S, Evangelista E, Gucchieri S (2004) Mater Sci Eng A 387–389:702CrossRefGoogle Scholar
  32. 32.
    Hirano K, Fujikawa S (1978) J Nucl Mater 69–70:564. doi: CrossRefGoogle Scholar
  33. 33.
    Rothman SJ, Peterson NL, Nowicki LJ, Robinson LC (1974) Phys Status Solidi B 63:K29–K33. doi: CrossRefGoogle Scholar
  34. 34.
    Hamersky M, Lukac P, Trojanova Z, Pink E (1991) Mater Sci Eng A 148:7. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ehab A. El-Danaf
    • 1
  • Abdulhakim A. AlMajid
    • 1
  • Mahmoud S. Soliman
    • 1
  1. 1.Mechanical Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations