Journal of Materials Science

, Volume 43, Issue 18, pp 6296–6300 | Cite as

Joining of tungsten carbide to nickel by direct diffusion bonding and using a Cu–Zn alloy

  • José Lemus-RuizEmail author
  • Leonel Ceja-Cárdenas
  • J. A. Verduzco
  • Osvaldo Flores


The objective of this work was to study various aspects of liquid and solid state diffusion bonding of cylindrical samples of WC (with 6% Co) and commercially pure nickel (99.5%) produced by direct bonding and brazing using a 25 μm thick 70Cu 30Zn (wt%) alloy as joining element. Joining experiments were carried out on WC/Ni and WC/Cu Zn/Ni combinations at temperature of 980 °C using 1, 15, 25 and 35 min holding times in argon (Ar). The results show that it is possible to create a successful joint at temperature and times used. Joining occurred by the formation of a diffusion zone. The joining interface is feasible because it presents a homogeneous interface with no several interfacial cracking and porosity. In both combinations, it can be observed a diffusion of cobalt decreasing in the direction of the metal, as well as, the diffusion of nickel decreasing in the direction of the ceramic.


Tungsten Carbide Reaction Layer Joint Strength Diffusion Bonding Diffusion Interface 



The authors would like to thank to CONACYT-México and Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) for the financial support and facilities of this research.


  1. 1.
    Fernie JA, Sturgeon AJ (1992) Bonding & joining. Joining Ceramic Materials, USAGoogle Scholar
  2. 2.
    Nicholas MG (1998) Joining processes: introduction to brazing and diffusion bondingGoogle Scholar
  3. 3.
    Tomsia AP (1993) J Phys IV 3:1317. doi: Google Scholar
  4. 4.
    Tinsley ND, Huddleston J, Lacey MR (1998) Mater Manuf Process 13:491CrossRefGoogle Scholar
  5. 5.
    Janickovic D, Sebo P, Duhaj P, Svec P (2001) Mater Sci Eng A 304–306:569. doi: CrossRefGoogle Scholar
  6. 6.
    Carim AH, Mohr CH (1997) Mater Lett 33:195. doi: CrossRefGoogle Scholar
  7. 7.
    Wang L, Aldinger F (2002) Mater Lett 54:93. doi: CrossRefGoogle Scholar
  8. 8.
    Heikimheimo E, Isomaki I, Kodentsov AA, Van Loo FJJ (1997) J Eur Ceram Soc 17:25. doi: CrossRefGoogle Scholar
  9. 9.
    Locatelli MR, Dalgleish BJ, Nakashima K, Tomsia AP, Glaeser AM (1997) Ceram Int 23:313. doi: CrossRefGoogle Scholar
  10. 10.
    Marks RA, Chapman DR, Danielson DT, Glaeser AM (2000) Acta Mater 48:4425. doi: CrossRefGoogle Scholar
  11. 11.
    Lemus J, Drew RAL (2003) Mater Sci Eng A352–306:169CrossRefGoogle Scholar
  12. 12.
    Jadoon AK, Ralph B, Hornsby PR (2004) J Mater Proc Tech 152:257. doi: CrossRefGoogle Scholar
  13. 13.
    Suganuma K (1993) Mater Res Soc Sym Proc 314:51CrossRefGoogle Scholar
  14. 14.
    Anderson RM (1989) Adv Mater Proc 3:31Google Scholar
  15. 15.
    Richerson DW (1992) Modern ceramic engineering, 2nd edn. Marcel Decker, New YorkGoogle Scholar
  16. 16.
    Osendi MI, De Pablos A, Miranzo P (2001) Mater Sci Eng A 308:53. doi: CrossRefGoogle Scholar
  17. 17.
    Lemus-Ruiz J, León-Patiño CA, Drew RAL (2006) Metall Mater Trans A 37A:69. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • José Lemus-Ruiz
    • 1
    Email author
  • Leonel Ceja-Cárdenas
    • 1
  • J. A. Verduzco
    • 1
  • Osvaldo Flores
    • 2
  1. 1.Instituto de Investigaciones MetalúrgicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations