Journal of Materials Science

, Volume 43, Issue 18, pp 6289–6295 | Cite as

Gas phase hydrogenation reaction using a ‘metal nanoparticle–polymer’ composite catalyst

  • Kaushik MallickEmail author
  • Kartick Mondal
  • Mike Witcomb
  • Mike Scurrell


A facile synthesis route is described here for the preparation of a poly (anthranilic acid)-palladium nanoparticle composite material by polymerization of anthranilic acid (AA) monomer using palladium acetate (PA) as the oxidant. It was found that oxidative polymerization of AA leads to the formation of poly-AA (PAA), while the reduction of PA results in the formation of palladium nanoparticles with an average size of ~2 nm. The palladium nanoparticles were uniformly dispersed and highly stabilized within the macromolecular matrix resulting in a uniform metal–polymer composite material. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which yielded information about the chemical structure of polymer, whereas electron microscopy images provided information concerning the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was tested as a catalyst for ethylene hydrogenation reaction and showed a catalytic activity at higher temperatures.


Palladium Polyaniline Anthranilic Acid Palladium Nanoparticles Polymer Composite Material 


  1. 1.
    Gangopadhyay R, De A (2000) Chem Mater 12:608CrossRefGoogle Scholar
  2. 2.
    Selvan ST, Spatz JP, Klok HA, Möller M (1998) Adv Mater 10:132CrossRefGoogle Scholar
  3. 3.
    Lee J, Sundar VC, Heine JR, Bawendi MG, Jensen KF (2000) Adv Mater 12:1102CrossRefGoogle Scholar
  4. 4.
    Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Rühm A, Lennox RB (2001) J Am Chem Soc 123:10411CrossRefGoogle Scholar
  5. 5.
    Mallick K, Witcomb MJ, Scurrell MS (2007) Phys Status Solidi (RRL) 1:R1CrossRefGoogle Scholar
  6. 6.
    Dai X, Tan Y, Xu J (2002) Langmuir 18:9010CrossRefGoogle Scholar
  7. 7.
    Kinyanjui JM, Hatchett DW, Smith JA, Josowicz M (2004) Chem Mater 6:3390CrossRefGoogle Scholar
  8. 8.
    Vijaya Kumar R, Mastai Y, Diamant Y, Gedanken A (2001) J Mater Chem 11:1209CrossRefGoogle Scholar
  9. 9.
    O’Mullane AP, Dale SE, Macpherson JV, Unwin PR (2004) Chem Commun 1606Google Scholar
  10. 10.
    Hasik M, Wenda E, Bernasik A, Kowalski K, Sobczak JW, Sobczak E, Bielańska E (2003) Polymer 44:7809CrossRefGoogle Scholar
  11. 11.
    Deschamps A, Lagier JP, Fievert F, Aeiyach S, Lacaze PC (1992) J Mater Chem 2:1213CrossRefGoogle Scholar
  12. 12.
    Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Macromol Rapid Commun 26:232CrossRefGoogle Scholar
  13. 13.
    Mallick K, Witcomb MJ, Scurrell MS (2006) Eur Polym J 42:670CrossRefGoogle Scholar
  14. 14.
    Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2006) J Mater Sci 41:1733. doi: CrossRefGoogle Scholar
  15. 15.
    Mallick K, Witcomb MJ, Scurrell MS (2006) Gold Bull 39:136CrossRefGoogle Scholar
  16. 16.
    Panshin BI, Perov BV, Fedorenko AG (1971) Mech Comp Mater 7:159Google Scholar
  17. 17.
    Kazim S, Ali V, Zulfequar M, Haq MM, Husain M (2007) Curr Appl Phys 7:68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kaushik Mallick
    • 1
    Email author
  • Kartick Mondal
    • 2
  • Mike Witcomb
    • 3
  • Mike Scurrell
    • 2
  1. 1.Advanced Materials DivisionMintekRandburgSouth Africa
  2. 2.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Electron Microscope UnitUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations