Journal of Materials Science

, Volume 43, Issue 17, pp 5772–5783 | Cite as

The interaction of magnesium in hydration of C3S and CSH formation using 29Si MAS-NMR

  • L. FernandezEmail author
  • C. AlonsoEmail author
  • C. Andrade
  • A. Hidalgo


Hydration of tricalcium silicate in hydrothermal conditions in the presence of magnesium oxide has shown changes in the formation of CSH gel structure (Calcium silicate hydrates). The new CSH incorporates magnesium ions, brucite, but a weak presence of portlandite. The magnesium oxide would hinder the precipitation of portlandite. The characterization of CSH gel by 29Si MAS-NMR with various CaO/SiO2 ratios would point out that: (1) A dreierketten structure of the CSH for low CaO/SiO2 < 1, with some defects (Q3 defect and Q2v) in its structure is confirmed. Some magnesium ions are incorporated in the octahedral sites, in the interlayer space of the dreierketten pattern. (2) For the CSH gels with CaO/SiO2 ratios > 1, magnesium ions would be incorporated in the silicate chains of the CSH gel in a tetrahedral coordination. Although, the low MgO/CaO ratios of CSH gels indicate that the magnesium incorporation in CSH chain is low.


Brucite Calcium Silicate Hydrate Magnesium Silicate Tobermorite Tricalcium Silicate 



The authors thank the “Ministerio de Educación y Ciencia” and the C.I.C.Y.T of Spain for the funds provided, as well as to the DG-XII of the E.U: UNICORN Project (BRPR-CT97-0511). We also thank to Dr. C. Vernet (Lafarge Society) for the synthesis of C3S and to the Department of NMR. Spectroscopy (C.A.I) from the “Universidad Complutense de Madrid” for the testing facilities.


  1. 1.
    Taylor HFW (1990) Cement chemistry. Academic Press, LondonGoogle Scholar
  2. 2.
    Masse S (1993) PhD: Synthèse Hydrothermal d’Hydrates de Silicate Tricalcique. Analyse Structurale en Phase Solide. Etude Comparative avec les Ciments Utilisés pour Chemiser les Puits de Pétrole, Université Pierre et Marie Curie ParisGoogle Scholar
  3. 3.
    Flint EP, Wells LS (1934) J Res Natl Bur Stand 12:751CrossRefGoogle Scholar
  4. 4.
    Brunauer S, Kantro D, Copeland L (1958) J Am Chem Soc 80:761. doi: CrossRefGoogle Scholar
  5. 5.
    Greenberg SA, Chang TN (1965) J Phys Chem 69:182. doi: CrossRefGoogle Scholar
  6. 6.
    Greenberg SA, Chang TN, Anderson E (1965) J Phys Chem 64:1151. doi: CrossRefGoogle Scholar
  7. 7.
    Roller PS, Ewin JG (1940) J Am Chem Soc 62:461. doi: CrossRefGoogle Scholar
  8. 8.
    Taylor HFW (1950) J Chem Soc 726:3682. doi: CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Richardson IG (2004) Cem Concr Res 34:1733. doi: CrossRefGoogle Scholar
  11. 11.
    Cong X, Kirkpatrick R (1996) J Adv Cem Base Mater 3:144. doi: CrossRefGoogle Scholar
  12. 12.
    Klur I (1996) PhD: Etude par RMN de la Structure des Silicates de Calcium Hydratés, Université Pierre et Marie Curie ParisGoogle Scholar
  13. 13.
    Klur I, Pollet B, Virlet J, Nonat A (1998). In: Colombet P (ed) Nuclear magnetic resonance spectroscopy of cement-based materials. Springer, BerlinGoogle Scholar
  14. 14.
    Grutzeck M, Benesi A, Fanning B (1989) J Am Ceram Soc 72:665. doi: CrossRefGoogle Scholar
  15. 15.
    Rodger SA, Groves GW, Clayden NJ, Dobson CM (1988) J Am Ceram Soc 71:91. doi: CrossRefGoogle Scholar
  16. 16.
    Fernandez L, Alonso C, Hidalgo A, Andrade C (2005) Adv Cem Res 17:9. doi: CrossRefGoogle Scholar
  17. 17.
    Pytel Z, Malolepszy J (1997). In: Justnes H (ed) Proc Int Congr Chem Cem 10th, Amarkai AB, GoeteborgGoogle Scholar
  18. 18.
    Shrivastava OP, Komarneni S, Breval E (1991) Cem Concr Res 21:83. doi: CrossRefGoogle Scholar
  19. 19.
    Xu G, Lai Z, Qian G, Yang S, Zhou Q (2000) Guisuanyan Xuebao 28:100Google Scholar
  20. 20.
    Massiot D, Thiele H, Germanus A (1994) Bruker Rep 140:43Google Scholar
  21. 21.
    Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley & Sons, ChichesterGoogle Scholar
  22. 22.
    Mägi M, Lippmaa E, Samoson A, Engelhardt G, Grimmer AR (1984) J Phys Chem 88:1518. doi: CrossRefGoogle Scholar
  23. 23.
    Brough AR, Dobson CM, Richardson IG, Groves GW (1994) J Am Ceram Soc 77:593. doi: CrossRefGoogle Scholar
  24. 24.
    Cong X, Kirkpatrick RJ (1993) Cem Concr Res 23:1065. doi: CrossRefGoogle Scholar
  25. 25.
    Dobson CM, Goberdhan DGC, Ramsay JDF, Rodger SA (1988) J Mater Sci 23:4108. doi: CrossRefGoogle Scholar
  26. 26.
    Noma H, Adachi Y, Yamada H, Nishino T, Matsuda Y, Yokoyama T (1998). In: Colombet P (ed) Nuclear magnetic resonance spectroscopy of cement-based materials. Springer, BerlinGoogle Scholar
  27. 27.
    Ramanchandran VS, Feldman RF, Beaudoin JJ (1981) Concrete science. Heyden and Son Ltd., Philadelphia, PAGoogle Scholar
  28. 28.
    Taylor HFW (1986) J Am Ceram Soc 69:464. doi: CrossRefGoogle Scholar
  29. 29.
    Stein HN, Stevels JM (1964) J Appl Chem 14:338CrossRefGoogle Scholar
  30. 30.
    Grutzeck MW, Kwan S, Thompson JL, Benesi A (1999) J Mater Sci Lett 18:217. doi: CrossRefGoogle Scholar
  31. 31.
    Barnes JR, Clague ADH, Clayden NJ, Dobson CM, Hayes CJ, Groves GW et al (1985) J Mater Sci Lett 4:1293. doi: CrossRefGoogle Scholar
  32. 32.
    Brunet F, Bertani P, Charpentier T, Virlet J, Nonat A (2004) J Phys Chem B 108:15494. doi: CrossRefGoogle Scholar
  33. 33.
    Klur I, Jacquinot JF, Brunet F, Charpentier T, Virlet J, Schneider C et al (2000) J Phys Chem B 104:10162. doi: CrossRefGoogle Scholar
  34. 34.
    Faucon P, Delaye JM, Virlet J (1996) J Solid State Chem 127:92. doi: CrossRefGoogle Scholar
  35. 35.
    Faucon P, Jacquinot JF, Delaye JM, Virlet J (1997) Philos Mag B 75:769. doi: CrossRefGoogle Scholar
  36. 36.
    Skibsted J, Jakobsen HJ, Hall C (1995) J Chem Soc-Faraday Trans 91:4423. doi: CrossRefGoogle Scholar
  37. 37.
    Edwards CL, Alemany LB, Barron AR (2007) Ind Eng Chem Res 46:5122. doi: CrossRefGoogle Scholar
  38. 38.
    Stephan D, Wistuba S (2006) J Eur Ceram Soc 26:141. doi: CrossRefGoogle Scholar
  39. 39.
    Peterson VK, Hunter BA, Ray A (2004) J Am Ceram Soc 87:1625CrossRefGoogle Scholar
  40. 40.
    De La Torre AG, Bruque S, Campo J, Aranda MAG (2002) Cem Concr Res 32:1347. doi: CrossRefGoogle Scholar
  41. 41.
    De La Torre AG, Bruque S, Aranda MAG (2001) J Appl Crystallogr 34:196. doi: CrossRefGoogle Scholar
  42. 42.
    Mumme WG (1995) Neues Jahrb Mineral-Montash Hefte 4:145Google Scholar
  43. 43.
    Clayden NJ, Dobson CM, Groves GW, Rodger SA (1986). In: Secr (ed) Congr Int Quim Cimento 8th, Geral 8o CIQC, Rio de JaneiroGoogle Scholar
  44. 44.
    Janes N, Oldfield E (1985) J Am Chem Soc 107:6769. doi: CrossRefGoogle Scholar
  45. 45.
    Dupree R, Smith ME (1988) J Chem Soc Chem Commun 22:1483. doi: CrossRefGoogle Scholar
  46. 46.
    MacKenzie KJD, Meinhold RH (1994) J Mater Chem 4:1595. doi: CrossRefGoogle Scholar
  47. 47.
    Fiske PS, Stebbins JF (1994) Am Mineral 79:848Google Scholar
  48. 48.
    Yang H, Hazen RM, Downs RT, Finger LW (1997) Phys Chem Miner 24:510. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Construction Science “Eduardo Torroja”(C.S.I.C.)MadridSpain
  2. 2.Institut de Ciència dels Materials de la Universitat de Valencia (ICMUV)Universitat de ValenciaValenciaSpain

Personalised recommendations