Journal of Materials Science

, Volume 43, Issue 17, pp 5790–5796 | Cite as

Luminescence of heat-treated silicon-based polymers: promising materials for LED applications

  • Ilaria MenapaceEmail author
  • Gabriela Mera
  • Ralf Riedel
  • Emre Erdem
  • Rüdiger-A. Eichel
  • Alberto Pauletti
  • Graham A. Appleby


A new strategy to obtain transparent, thermally stable, and formable photoluminescent materials for LED applications is presented. Starting from commercially available silicon-based polymers, luminescence properties are developed by means of simple heat treatment. Solid polymethylsilsesquioxane MK (Wacker-Besil®PMS MK) and liquid poly(ureamethylvinyl)silazane Ceraset (Kion Ceraset® PUVMS) were thermally treated between 200 and 700 °C for 2 h under Ar atmosphere. Photoluminescence properties were observed in all the samples. The structural rearrangements during thermal annealing were effective in order to red-shift the emission spectra of the untreated polymers to the visible range. The formation of dangling bonds and carbon sp2, associated with the annealing procedure and confirmed by means of Electron Paramagnetic Resonance (EPR) spectroscopy and solid state Magic Angle Spinning NMR (MAS-NMR) contribute to the red-shift of the photoluminescence emissions of the polymers. After heat treatment at low temperatures (200, 300, and 400 °C), both the polymers show fluorescence in the UV range. While the polysiloxane reveals white luminescence after annealing at 500 and 600 °C, the polysilazane heat-treated at 500 °C exhibits emission in the blue-green range and is transparent. At higher temperatures the presence of free carbon counteracts the luminescence properties.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Free Carbon Electron Paramagnetic Resonance Measurement Spin Concentration 



The authors thank the European Community FP6 (MCRTN-019601, PolyCerNet), the Deutsche Forschungsgemeinschaft, Bonn, Germany (DFG-NSF research initiative), and the Fonds der Chemischen Industrie, Frankfurt, Germany for financial support. The authors acknowledge also the company Kion Inc., USA, for providing CerasetTM and Dr. Ute Liepold, Siemens AG, Munich, for fruitful discussions related to luminescence properties.

Supplementary material

10853_2008_2882_MOESM1_ESM.tif (338 kb)
Additional information 1: Emission spectra (360 nm excitation) (bottom right) and excitation spectra (for maximum emission) (top left) of MK at different temperatures MOESM1 (TIFF 337 kb)
10853_2008_2882_MOESM2_ESM.tif (338 kb)
Additional information 2: Emission spectra (360 nm excitation) (bottom right) and excitation spectra (for maximum emission) (top left) of Ceraset at different temperatures MOESM2 (TIFF 337 kb)


  1. 1.
    Tan KL, Aizar AK, Oon SL, Tan BC (2004) US Patent 6806658Google Scholar
  2. 2.
    Bert B (2007) US Patent 20070024173Google Scholar
  3. 3.
    Janet CBY (2007) US Patent 20070247060Google Scholar
  4. 4.
    Narendran N, Gu Y, Freyssinier JP, Yu H, Deng L (2004) J Cryst Growth 268:449. doi: CrossRefGoogle Scholar
  5. 5.
    Zhu C, Yang Y, Liang X, Yuan S, Chen G (2007) J Lumin 126(2):707. doi: CrossRefGoogle Scholar
  6. 6.
    Sun X, Zhang J, Zhang X, Lu S, Wang X (2007) J Lumin 122–123:955. doi: CrossRefGoogle Scholar
  7. 7.
    Schubert U, Hüsing N (2004) Synthesis of inorganic materials. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  8. 8.
    Gardonio S, Gregoratti L, Melpignano P, Aballe L, Biondo V, Zamboni R et al (2007) Org Electron 8:37. doi: CrossRefGoogle Scholar
  9. 9.
    Suzuki H (1996) Adv Mater 8(8):657. doi: CrossRefGoogle Scholar
  10. 10.
    Michl J, Downing JW, Karatsu T, McKinley AJ, Poggi G, Wallraff GM et al (1988) Pure Appl Chem 60(7):959. doi: CrossRefGoogle Scholar
  11. 11.
    Thames SF, Panjnani KG (1996) J Inorg Organomet Polymers 6(2):59. doi: CrossRefGoogle Scholar
  12. 12.
    Riedel R, Mera G, Hauser R, Klonczynski A (2006) J Ceram Soc Jpn 114:425. doi: CrossRefGoogle Scholar
  13. 13.
    Li YL, Riedel R, Steiger J, Von Seggern H (2000) Adv Eng Mater 2(5):290. doi :10.1002/(SICI)1527-2648(200005)2:5<290::AID-ADEM290>3.0.CO;2-1CrossRefGoogle Scholar
  14. 14.
    Radovanovic E, Gozzi MF, Gonçalves MC, Yoshida IVP (1999) J Non-Cryst Solids 248:37. doi: CrossRefGoogle Scholar
  15. 15.
    Li YL, Kroke E, Riedel R, Fasel C, Gervais C, Babonneau F (2001) Appl Organomet Chem 15:820. doi: CrossRefGoogle Scholar
  16. 16.
    Rohwer LS, Srivastava AM (2003) Electrochem Soc Interface 12(2):36Google Scholar
  17. 17.
    Kleebe HJ, Gregori G, Babonneau F, Blum YD, MacQueen DB, Masse S (2006) Int J Mat Res 97(6):699Google Scholar
  18. 18.
    Andronenko SI, Stiharu I, Misra SK (2006) J Appl Phys 99:113907. doi: CrossRefGoogle Scholar
  19. 19.
    Laine RM, Babonneau F, Blowhowiak KY, Kennish RA, Rahn JA, Exarhos GJ et al (1995) Am Ceram Soc 78(1):137. doi: CrossRefGoogle Scholar
  20. 20.
    Trassl S, Motz G, Rössler E, Ziegler G (2002) J Am Ceram Soc 85(1):239CrossRefGoogle Scholar
  21. 21.
    Riedel R, Kienzle A, Dressler W, Ruwisch L, Bill J, Aldinger F (1996) Nature 382:796. doi: CrossRefGoogle Scholar
  22. 22.
    Riedel R, Passing G, Schönfelder H, Brook RJ (1992) Nature 355:714. doi: CrossRefGoogle Scholar
  23. 23.
    Berger F, Müller A, Aldinger F, Müller KZ (2005) Anorg Allg Chem 631:355. doi: CrossRefGoogle Scholar
  24. 24.
    Hayakawa T, Hiramitsu A, Nogami M (2003) Appl Phys Lett 82:18 10.1063/1.1569038CrossRefGoogle Scholar
  25. 25.
    Baran M, Bulakh B, Korsunska N, Khomenkova L, Jedrezejewski (2004) J Eur Phys Appl Phys (Berl) 27:285CrossRefGoogle Scholar
  26. 26.
    Yang P, Song CF, Lü MK, Chang J, Wang YZ, Yang ZX et al (2001) J Solid State Chem 160:272. doi: CrossRefGoogle Scholar
  27. 27.
    Prokes SM, Carlos WE, Veprek S, Ossadnik Ch (1998) Phys Rev B 58:23. doi: CrossRefGoogle Scholar
  28. 28.
    Prasad BL, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Rao AM et al (2000) Phys Rev B 62:11209. doi: CrossRefGoogle Scholar
  29. 29.
    Watanabe A (2003) J Organomet Chem 685:122. doi: CrossRefGoogle Scholar
  30. 30.
    Ogihara C, Nomiyama T, Yamamoto H, Nakamishi K, Harada J, Yu X et al (2006) J Non-Cryst Solids 352:1064. doi: CrossRefGoogle Scholar
  31. 31.
    Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley and Sons, USAGoogle Scholar
  32. 32.
    Gammon WJ, Malyarenko DI, Kraft O, Hoatson GL, Reilly AC, Holloway BC (2002) Phys Rev B 66:153402. doi: CrossRefGoogle Scholar
  33. 33.
    Yoon YG, Pfrommer BG, Mauri F, Louie SG (1998) Phys Rev Lett 80:3388. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ilaria Menapace
    • 1
    Email author
  • Gabriela Mera
    • 1
  • Ralf Riedel
    • 1
  • Emre Erdem
    • 2
  • Rüdiger-A. Eichel
    • 2
  • Alberto Pauletti
    • 3
  • Graham A. Appleby
    • 1
  1. 1.Institut für MaterialwissenschaftTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Eduard-Zintl-InstitutTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Laboratoire Chimie de la Matière Condensée, T54-55, E5Université Pierre et Marie Curie-Paris 6, 4 Place JussieuParis CedexFrance

Personalised recommendations