Journal of Materials Science

, Volume 43, Issue 17, pp 5728–5733 | Cite as

Polymer-layered silicate nanocomposites in the design of antimicrobial materials

  • Rinat NigmatullinEmail author
  • Fengge Gao
  • Viktoria Konovalova


A robust processing of polymers into antimicrobial materials is introduced using polymer/clay nanotechnology. Antimicrobial activity of commercially available organoclays modified with cationic surfactants has been screened in tests against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria. Despite the leaching biocidal surfactants, cell interactions with organoclay surface have been identified to be responsible for antimicrobial activity of organoclays. Distribution of clay platelets within polymer matrix by melt extrusion process resulted in polymer/clay nanocomposites active against both gram-positive and gram-negative bacteria by contact. The study discloses a much overlooked function of organoclays modified with cationic surfactants for nanocomposite application, i.e., the ability of organoclays to render polymer nanocomposites biocidal.


Clay Surfactant Minimal Inhibitory Concentration Biocide Cationic Surfactant 


  1. 1.
  2. 2.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539. doi: CrossRefGoogle Scholar
  3. 3.
    Zeng QH, Yu AB, Lu GQ, Paul DR (2005) J Nanosci Nanotechnol 5:1574. doi: CrossRefGoogle Scholar
  4. 4.
    Usuki A, Hasegawa N, Kato M (2005) Adv Polym Sci 179:135CrossRefGoogle Scholar
  5. 5.
    Fornes TD, Hunter DL, Paul DR (2004) Macromolecules 37:1793. doi: CrossRefGoogle Scholar
  6. 6.
    Yang I-K, Tsai P-H (2006) Polymer 47:5131. doi: CrossRefGoogle Scholar
  7. 7.
    Hugo WB, Russell AD (1999) In: Russell AD, Hugo WB, Ayliff GAJ (eds) Principles and practice of disinfection preservation and sterilisation. Blackwell Science, OxfordGoogle Scholar
  8. 8.
    Ohashi F, Oya A, Duclaux L, Beguin F (1998) Appl Clay Sci 12:435. doi: CrossRefGoogle Scholar
  9. 9.
    Patakfalvi R, Dékány I (2004) Appl Clay Sci 25:149. doi: CrossRefGoogle Scholar
  10. 10.
    Li B, Yu S, Hwang JY, Shi S (2002) J Min Mater Charact Eng 1:61Google Scholar
  11. 11.
    US Patent 4,929,644 (1990)Google Scholar
  12. 12.
    Dizman B, Badger JC, Elasri MO, Mathias LJ (2007) Appl Clay Sci 38:57. doi: CrossRefGoogle Scholar
  13. 13.
    Herrera P, Burghardt RC, Philips TD (2000) Vet Microbiol 74:259. doi: CrossRefGoogle Scholar
  14. 14.
    He H, Yang D, Yuan P, Shen W, Frost RL (2006) J Colloid Interface Sci 297:235. doi: CrossRefGoogle Scholar
  15. 15.
    Wang X, Du Y, Yang J, Wang X, Shi X, Hu Y (2006) Polymer (Guildf) 47:6738. doi: CrossRefGoogle Scholar
  16. 16.
    Wang X, Du Y, Yang J, Tang Y, Luo J (2008) J Biomed Mater Res A 84:384. doi: CrossRefGoogle Scholar
  17. 17.
    Steichen DS (2002) In: Holmberg K (ed) Handbook of applied surface and colloid chemistry, vol 1. Willey, ChichesterGoogle Scholar
  18. 18.
    Tiller JC, Sprich C, Hartmann L (2005) J Control Release 103:355. doi: CrossRefGoogle Scholar
  19. 19.
    Mandalia T, Bergaya F (2006) J Phys Chem Solids 67:836. doi: CrossRefGoogle Scholar
  20. 20.
    Styan KE, Martin DJ, Poole-Warren LA (2008) J Biomed Mater Res A (Epub ahead of print)Google Scholar
  21. 21.
    Styan K, Abrahamian M, Hume E, Poole-Warren LA (2007) Key Eng Mater 342–343:757CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rinat Nigmatullin
    • 1
    Email author
  • Fengge Gao
    • 1
  • Viktoria Konovalova
    • 2
  1. 1.School of Science and TechnologyNottingham Trent UniversityNottinghamUK
  2. 2.Department of ChemistryNational University of Kiev-Mohyla AcademyKievUkraine

Personalised recommendations