Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5823–5836 | Cite as

Hybrid organic–inorganic materials based on polypyrrole and 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) containing dianions

  • Antonio Gerson Bernardo da CruzEmail author
  • James Lewis Wardell
  • Ana M. Rocco
Article

Abstract

The synthesis of hybrid materials by electropolymerization of pyrrole and inorganic complexes based on the DMIT ligand (1,3-dithiole-2-thione-4,5-dithiolate), e.g. [NEt4]2[M(DMIT)n] (M = Ni, Pd or Pd, n = 2; M = Sn, n = 3], in acetonitrile solution is reported. Spectroscopic data showed that DMIT-containing anions, [M(DMIT)n]2−, were inserted into the polypyrrole framework without chemical modification during the electropolymerization process. Cyclic voltammetry showed that materials obtained were electroactive, undergoing redox processes related to both the conducting polymer and the counteranions. The electrochemical results also suggest that, in the case of the transition metal containing films, the counteranions are not trapped in the PPy matrix but undergo anion exchange during the redox cycle of PPy. However, an opposite behaviour was observed with the film with [M(DMIT)n]2−. The films exhibit good thermal stabilities and have conductivity values expected for semiconductors. This study of these hybrid materials highlights the importance of targeting specific materials for specific applications.

Keywords

Pyrrole Doping Level Polypyrrole Hybrid Film Pyrrole Ring 

Notes

Acknowledgements

The authors thank Capes and CNPq for fellowships, N. M. Comerlato and G. B. Ferreira for supplying the [NEt4]2[Zn(DMIT)2] complex and FAPERJ (Proc. No. E-26/170.700/2004) for financial support.

References

  1. 1.
    Malinauskas A, Malinauskien J, Ramanavičius A (2005) Nanotechnology 16:R51. doi: https://doi.org/10.1088/0957-4484/16/10/R01 CrossRefGoogle Scholar
  2. 2.
    Lange U, Roznyatovskaya NV, Mirsky VM (2008) Anal Chim Acta 61:41Google Scholar
  3. 3.
    Yamamoto K, Yamada M, Nishiumi T (2000) Polym Adv Technol 11:710. doi :10.1002/1099-1581(200008/12)11:8/12<710::AID-PAT24>3.0.CO;2-KCrossRefGoogle Scholar
  4. 4.
    Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403. doi: https://doi.org/10.1016/S0013-4686(00)00329-7 CrossRefGoogle Scholar
  5. 5.
    Malinauskas A (2001) Polymer Guildf 42(9):3957. doi: https://doi.org/10.1016/S0032-3861(00)00800-4 CrossRefGoogle Scholar
  6. 6.
    Deslouis C, Duprat M, Tournillon C (1989) Corros Sci 29:13. doi: https://doi.org/10.1016/0010-938X(89)90077-2 CrossRefGoogle Scholar
  7. 7.
    Ferreira CA, Lacaze JC (2001) J Electrochem Soc 148(4):121. doi: https://doi.org/10.1149/1.1354613 CrossRefGoogle Scholar
  8. 8.
    Kesting RE, Fritzsche AK (eds) (1993) Polymeric gas separation membranes. John Wiley & Sons, Inc., New York, USAGoogle Scholar
  9. 9.
    Guimard NK, Gomez N, Schmidt CE (2007) Prog Polym Sci 32:876. doi: https://doi.org/10.1016/j.progpolymsci.2007.05.012 CrossRefGoogle Scholar
  10. 10.
    Otero TF (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, Chapter 10, vol 4. Wiley, Chichester, UKGoogle Scholar
  11. 11.
    Carter FL (ed) (1982) Molecular electronic devices. Marcel Dekker, New York.Google Scholar
  12. 12.
    Lubentsov BZ, Zvereva GI, Samovarov YH, Bystriak SM, Timofeeva ON, Khidekel MI (1991) Synth Met 41:1143; Krieger YG (1993) J Struct Chem 34:896Google Scholar
  13. 13.
    (a) Otero TF, Villanueva S, Cortes MT, Cheng SA, Vazquez A, Boyano I (2001) Synth Met 119:419. doi: https://doi.org/10.1016/S0379-6779(00)01273-X; (b) Saito Y, Azechi T, Kitamura T, Hasegawa Y, Wada Y, Yanagida S (2004) Coord Chem Rev 248:1469. doi: https://doi.org/10.1016/j.ccr.2004.03.025
  14. 14.
    Rowley NM, Mortimer RJ (2002) Sci Prog 85(3):243CrossRefGoogle Scholar
  15. 15.
    Wang F, Wilson MS, Rauh RD, Schottland P, Thompson BC, Reynolds JR (2000) Macromolecules 33:2083. doi: https://doi.org/10.1021/ma9918506 CrossRefGoogle Scholar
  16. 16.
    Luna AMC (2000) J Appl Electrochem 30:1137. doi: https://doi.org/10.1023/A:1004050922065 CrossRefGoogle Scholar
  17. 17.
    Bouzek K, Mangold K-M, Jüttner K (2000) Electrochim Acta 46:661. doi: https://doi.org/10.1016/S0013-4686(00)00659-9 CrossRefGoogle Scholar
  18. 18.
    Bargon J, Baumann R (1993) Microelectronic Eng 20:55. doi: https://doi.org/10.1016/0167-9317(93)90207-L CrossRefGoogle Scholar
  19. 19.
    Ryder KS, Morris DG, Cooper JM (1997) Biosens Bioelectron 8:721. doi: https://doi.org/10.1016/S0956-5663(97)00039-0 CrossRefGoogle Scholar
  20. 20.
    Frommer JE, Chance RR (eds) (1986) Electrically conducting polymers. Encyclopaedia Polym Sci Eng 5:462Google Scholar
  21. 21.
    Saunders BR, Murray KS, Fleming RJ (1992) Synth Met 47:167. doi: https://doi.org/10.1016/0379-6779(92)90384-U CrossRefGoogle Scholar
  22. 22.
    Wang G, Chen H, Zhang H, Shen Y, Yuan C, Lu Z et al (1998) Phys Lett A 237:165. doi: https://doi.org/10.1016/S0375-9601(97)00837-2 CrossRefGoogle Scholar
  23. 23.
    Saunders BR, Murray KS, Fleming RJ, Korbatieh Y (1993) Chem Mater 5:809. doi: https://doi.org/10.1021/cm00030a016 CrossRefGoogle Scholar
  24. 24.
    Saunders BR, Murray KS, Fleming RJ, McCulloch DG (1995) Synth Met 69:363. doi: https://doi.org/10.1016/0379-6779(94)02487-J CrossRefGoogle Scholar
  25. 25.
    Pullen AE, Olk R-M (1999) Coord Chem Rev 188:211. doi: https://doi.org/10.1016/S0010-8545(99)00031-4 CrossRefGoogle Scholar
  26. 26.
    da Cruz AGB, Wardell JL, Simão RA, Rocco AM (2006) Electrochim Acta 52:1899. doi: https://doi.org/10.1016/j.electacta.2006.07.061 CrossRefGoogle Scholar
  27. 27.
    da Cruz AGB, Wardell JL, Simão RA, Rocco AM, Rangel MVD (2007) Synth Met 157:80. doi: https://doi.org/10.1016/j.synthmet.2006.12.010 CrossRefGoogle Scholar
  28. 28.
    Pereira RP, Wardell JL, Rocco AM (2005) Synth Met 150:21. doi: https://doi.org/10.1016/j.synthmet.2004.12.020 CrossRefGoogle Scholar
  29. 29.
    da Cruz AGB, Wardell JL, Rocco AM (2006) Synth Met 156:396. doi: https://doi.org/10.1016/j.synthmet.2005.12.026 CrossRefGoogle Scholar
  30. 30.
    Steimecke G, Sieler H-J, Kirmse R, Hoyer E (1979) Phosporous Sulfur 7:49. doi: https://doi.org/10.1080/03086647808069922 Google Scholar
  31. 31.
    Yu L, Zhu D (1996) Phosporous Sulfur 116:225. doi: https://doi.org/10.1080/10426509608040483 CrossRefGoogle Scholar
  32. 32.
    Malfant I, Cordente N, Lacroix PG, Lepetit C (1998) Chem Mater 10:4079. doi: https://doi.org/10.1021/cm980487z CrossRefGoogle Scholar
  33. 33.
    Cassoux P, Valade L, Kobayashi H, Clark RA, Underhill AE (1991) Coord Chem Rev 110:115. doi: https://doi.org/10.1016/0010-8545(91)80024-8 CrossRefGoogle Scholar
  34. 34.
    Bates JR, Milesa RW, Kathirgamanathan P (1996) Synth Met 76:313. doi: https://doi.org/10.1016/0379-6779(95)03479-4 CrossRefGoogle Scholar
  35. 35.
    Bates JR, Kathirgamanathan P, Miles RW (1997) Thin Solid Films 299:18. doi: https://doi.org/10.1016/S0040-6090(96)09172-9 CrossRefGoogle Scholar
  36. 36.
    Abruña HD (1988) Coord Chem Rev 86:135. doi: https://doi.org/10.1016/0010-8545(88)85013-6 CrossRefGoogle Scholar
  37. 37.
    Abrantes LM, Correia JP (1999) Electrochim Acta 44:1901. doi: https://doi.org/10.1016/S0013-4686(98)00299-0 CrossRefGoogle Scholar
  38. 38.
    Nalwa HS (ed) (1997) Handbook of conductive polymers: spectroscopy and physical properties, Chapter 12, vol 3. Wiley, Chichester, UKGoogle Scholar
  39. 39.
    Simon A, Ricco AJ, Wrighton MS (1982) J Am Chem Soc 104:2031. doi: https://doi.org/10.1021/ja00371a045 CrossRefGoogle Scholar
  40. 40.
    Collard DM, Sayre CN (1997) Synth Met 84:329. doi: https://doi.org/10.1016/S0379-6779(97)80768-0 CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Rocco AM, Pereira RP, Bonapace JAP, Comerlato NM, Wardell JL, Milne BF et al (2004) Inorg Chim Acta 357:1047. doi: https://doi.org/10.1016/j.ica.2003.09.026 CrossRefGoogle Scholar
  43. 43.
    Liu G, Fang Q, Xu W, Chen H, Wang C (2004) Spectrochim Acta A: Mol Biomol Spectrosc 60:541. doi: https://doi.org/10.1016/S1386-1425(03)00260-9 CrossRefGoogle Scholar
  44. 44.
    Valade L, Legros J-P, Cassoux P (1986) Mol Cryst Liq Cryst (Phila Pa; 2003) 140:335. doi: https://doi.org/10.1080/00268948608080163 CrossRefGoogle Scholar
  45. 45.
    Pullen AE, Abboud KA, Reynolds JR (1996) Phys Rev B 53:10557. doi: https://doi.org/10.1103/PhysRevB.53.10557 CrossRefGoogle Scholar
  46. 46.
    Jang J, Yoon H (2003) Chem Commun (Camb) 720. doi: https://doi.org/10.1039/b211716a
  47. 47.
    Cervini R, Fleming RJ, Murray KS (1992) J Mater Chem 2:1115. doi: https://doi.org/10.1039/jm9920201115 CrossRefGoogle Scholar
  48. 48.
    Han J, Lee S, Paik W (1992) Bull Korean Chem Soc 13Google Scholar
  49. 49.
    Shilabin AG, Entezami AA (2000) Eur Polym J 36:2005. doi: https://doi.org/10.1016/S0014-3057(99)00262-1 CrossRefGoogle Scholar
  50. 50.
    Li F, Albery WJ (1991) J Chem Soc, Faraday Trans 87:2949. doi: https://doi.org/10.1039/ft9918702949 CrossRefGoogle Scholar
  51. 51.
    Cheung KM, Bloor D, Stevens GC (1990) J Mater Sci 25:3814. doi: https://doi.org/10.1007/BF00582447 CrossRefGoogle Scholar
  52. 52.
    Dong S, Lian G (1990) J Electroanal Chem 291:23. doi: https://doi.org/10.1016/0022-0728(90)87174-I CrossRefGoogle Scholar
  53. 53.
    Varela H, Bruno RL, Torresi RM (2003) Polymer (Guildf) 44:5369. doi: https://doi.org/10.1016/S0032-3861(03)00526-3 CrossRefGoogle Scholar
  54. 54.
    McCormac T, Breens W, McGree A, Cassidy JF, Lyons MEG (1995) Electroanalysis 287CrossRefGoogle Scholar
  55. 55.
    Lyons MEG, Breens W, Cassidy JF (1991) J Chem Soc, Faraday Trans 87:115. doi: https://doi.org/10.1039/ft9918700115 CrossRefGoogle Scholar
  56. 56.
    McCormac T, Farrell D (2001) Electrochim Acta 46:3287. doi: https://doi.org/10.1016/S0013-4686(01)00621-1 CrossRefGoogle Scholar
  57. 57.
    Cheng S, Otero TF, Coronado E, Garcia CJG, Ferrero EM, Saiz CG (2002) J Phys Chem B 106:7585. doi: https://doi.org/10.1021/jp014340y CrossRefGoogle Scholar
  58. 58.
    Bobacka J, Ivaska A, Grzeszczuk M (1991) Synth Met 44:9. doi: https://doi.org/10.1016/0379-6779(91)91853-3 CrossRefGoogle Scholar
  59. 59.
    Cervini R, Fleming RJ, Kennedy BJ, Murray KS (1994) J Mater Chem 4:87. doi: https://doi.org/10.1039/jm9940400087 CrossRefGoogle Scholar
  60. 60.
    Uyar T, Toppare L, Hacaloglu J (2002) J Anal Appl Pyrolysis 64:1. doi: https://doi.org/10.1016/S0165-2370(01)00166-8 CrossRefGoogle Scholar
  61. 61.
    da Cruz AGB, Wardell JL, Rocco AM (2006) Thermochim Acta 443:190Google Scholar
  62. 62.
    Smits FM (1958) Bell Syst Tech J 37:711CrossRefGoogle Scholar
  63. 63.
    Uhlir A Jr (1955) Bell Syst Tech J 34:105CrossRefGoogle Scholar
  64. 64.
    Zimney EJ, Dommett GHB, Ruoff RS, Dikin DK (2007) Meas Sci Technol 18:2067. doi: https://doi.org/10.1088/0957-0233/18/7/037 CrossRefGoogle Scholar
  65. 65.
    Girotto EM, Santos IA (2002) Quim Nova 25:639. doi: https://doi.org/10.1590/S0100-40422002000400019 CrossRefGoogle Scholar
  66. 66.
    Wernet W, Wegner G (1987) Makromol Chem 188:1465. doi: https://doi.org/10.1002/macp.1987.021880621 CrossRefGoogle Scholar
  67. 67.
    Yamaura M, Hagiwara T, Iwata K (1988) Synth Met 26:209. doi: https://doi.org/10.1016/0379-6779(88)90238-X CrossRefGoogle Scholar
  68. 68.
    Comerlato NM, Costa LAS, Howie RA, Pereira RP, Rocco AM, Silvino AC et al (2001) Polyhedron 20:415. doi: https://doi.org/10.1016/S0277-5387(00)00643-4 CrossRefGoogle Scholar
  69. 69.
    Fereira GB, Comerlato NM, Wardell JL, Hollauer E (2005) Spectrochim Acta A: Mol Biomol Spectrosc 61:2663CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Antonio Gerson Bernardo da Cruz
    • 1
    Email author
  • James Lewis Wardell
    • 2
  • Ana M. Rocco
    • 3
  1. 1.Departamento de Física e Química/ICEUniversidade Federal de Itajubá (UNIFEI)ItajubaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Grupo de Materiais Condutores e Energia, Departamento de Processos Inorgânicos, Escola de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations