Journal of Materials Science

, Volume 43, Issue 18, pp 6254–6259 | Cite as

Thermal stability of aluminum cold rolled to large strain

  • N. HansenEmail author
  • X. Huang
  • M. G. Møller
  • A. Godfrey


Common to metals deformed to high strains is a very fine microstructure, high strength, and limited ductility. Structure and property optimization by annealing after deformation must, therefore, be explored. In the present study, commercial purity aluminum has been annealed after cold rolling to ultrahigh strains up to \( \varepsilon _{{{\text{vM}}}} = 6.2 \) and annealing processes have been studied in terms of recovery and conventional recrystallization. These processes have been analyzed by isochronal and isothermal annealing in the temperature range 140–420 °C. It has been found that the recrystallization temperature is a little affected by the rolling strain, whereas the rate of recovery and the temperature range over which recovery takes place increase significantly as the strain is increased. These observations are discussed as to how they can guide studies of nanostructured metals processed by plastic deformation.


Recrystallization Isothermal Annealing Accumulative Roll Bond High Angle Boundary Rolling Texture 



The authors acknowledge support form Danish National Research Foundation to the Center for Fundamental Research: Metal Structures in Four Dimensions. The authors also acknowledge valuable discussions with D. Juul Jensen and R.A. Vandermeer. The authors also thank Ms. Eva Nielsen for assistance with preparation of the manuscript.


  1. 1.
    Godfrey A, Cao WQ, Hansen N, Liu Q (2005) Metall Trans A 36A:2371. doi: CrossRefGoogle Scholar
  2. 2.
    Cao WQ, Godfrey A, Hansen N, Liu Q (2008) Metall Trans A (in press)Google Scholar
  3. 3.
    Knudsen T, Cao WQ, Godfrey A, Liu Q, Hansen N (2008) Metall Mater Trans A 39A:430. doi: CrossRefGoogle Scholar
  4. 4.
    Schamp J, Verlinden B, VanHumbeeck J (1996) Scripta Mater 34:1667. doi: CrossRefGoogle Scholar
  5. 5.
    Vandermeer RA, Juul Jensen D (2001) Acta Mater 49:2083. doi: CrossRefGoogle Scholar
  6. 6.
    Wu GL, Juul Jensen D (2005) Mat Sci Tech Paris 21:1407. doi: CrossRefGoogle Scholar
  7. 7.
    Xing Q, Huang X, Hansen N (2006) Metall Mater Trans A 37A:1311. doi: CrossRefGoogle Scholar
  8. 8.
    Huang X, Xing Q, Juul Jensen D, Hansen N (2006) Mater Sci Forum 519–521:79CrossRefGoogle Scholar
  9. 9.
    Hansen N, Huang X, Godfrey A (2007) Mater Sci Forum 558–559:201CrossRefGoogle Scholar
  10. 10.
    Mishin OV, Juul Jensen D, Hansen N (2003) Mater Sci Eng A 342:320. doi: CrossRefGoogle Scholar
  11. 11.
    Hansen N (2007) Mater Sci Forum 550:169CrossRefGoogle Scholar
  12. 12.
    Oscarsson A, Ekström H-E, Hutchinson WB (1993) Mater Sci Forum 113–115:177CrossRefGoogle Scholar
  13. 13.
    Jazaeri H, Humphreys FJ (2004) Acta Mater 52:3251. doi: CrossRefGoogle Scholar
  14. 14.
    Vandermeer RA, Hansen N (2008) Acta Mater (in press)Google Scholar
  15. 15.
    Furu T, Orsund R, Nes E (1995) Acta Metall Mater 43:2209. doi: CrossRefGoogle Scholar
  16. 16.
    Kamikawa N, Huang X, Hansen N (2008) This conferenceGoogle Scholar
  17. 17.
    Jones AR, Ralph B, Hansen N (1979) Proc R Soc A 368:345. doi: CrossRefGoogle Scholar
  18. 18.
    Tsuji N, Ho Y, Koizumi Y, Minamino Y Saito Y (2002) In: Zhu YT et al (eds) The minerals, metals and materials society, p 389Google Scholar
  19. 19.
    Huang X (2008) J Mater Sci (in press). doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • N. Hansen
    • 1
    Email author
  • X. Huang
    • 1
  • M. G. Møller
    • 1
  • A. Godfrey
    • 2
  1. 1.Materials Research Department, Center For Fundamental Research: Metal Structures in Four Dimensions, Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark
  2. 2.Department of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations