Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5924–5929 | Cite as

Synthesis and characterization of anatase and rutile TiO2 nanorods by template-assisted method

  • A. Sadeghzadeh Attar
  • M. Sasani Ghamsari
  • F. Hajiesmaeilbaigi
  • Sh. MirdamadiEmail author
  • K. Katagiri
  • K. Koumoto
Article

Abstract

Well-aligned anatase and rutile TiO2 nanorods and nanotubes with a diameter of about 80–130 nm have successfully been fabricated via sol-gel template method. The prepared samples were characterized by using thermogravimetric (TG) and differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The XRD results indicated that the TiO2 nanorods were crystallized in the anatase and rutile phases, after annealing at 400–800 °C for different periods of time from 0.2 to 10 h.

Keywords

TiO2 Rutile Anatase Phase Rutile Phase Anatase TiO2 

References

  1. 1.
    Mulmi DD, Sekiya T, Kamiya N, Kurita S, Murakami Y, Kodaira T (2004) J Phys Chem Solids 65:1181. doi: https://doi.org/10.1016/j.jpcs.2003.12.009 CrossRefGoogle Scholar
  2. 2.
    Karvinen S, Hirva P, Pakkanen TA (2003) J Mol Struct Theochem 626:271. doi: https://doi.org/10.1016/S0166-1280(03)00108-8 CrossRefGoogle Scholar
  3. 3.
    Xu A-W, Gao Y, Liu H-Q (2002) J Catal 207:151. doi: https://doi.org/10.1006/jcat.2002.3539 CrossRefGoogle Scholar
  4. 4.
    Keshmiri M, Mohseni M, Troczynski T (2004) Appl Catal Environ 53:209. doi: https://doi.org/10.1016/j.apcatb.2004.05.016 CrossRefGoogle Scholar
  5. 5.
    Niederberger M, Bartl MH, Stucky GD (2002) Chem Mater 4:4364. doi: https://doi.org/10.1021/cm021203k CrossRefGoogle Scholar
  6. 6.
    Wang C-C, Ying JY (1999) Chem Mater 11:3113. doi: https://doi.org/10.1021/cm990180f CrossRefGoogle Scholar
  7. 7.
    Wang C, Deng Z-X, Li Y (2001) Inorg Chem 40:5210. doi: https://doi.org/10.1021/ic0101679 CrossRefGoogle Scholar
  8. 8.
    Kumar PM, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122. doi: https://doi.org/10.1016/S0040-6090(99)00722-1 CrossRefGoogle Scholar
  9. 9.
    Sen S, Mahanty S, Roy S, Heintz O, Bourgeois S, Chaumont D (2005) Thin Solid Films 474:245. doi: https://doi.org/10.1016/j.tsf.2004.04.004 CrossRefGoogle Scholar
  10. 10.
    Wu J-J, Yu C-C (2004) J Phys Chem B 108:3377. doi: https://doi.org/10.1021/jp0361935 CrossRefGoogle Scholar
  11. 11.
    Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770. doi: https://doi.org/10.1021/cm990172z CrossRefGoogle Scholar
  12. 12.
    Kolenko YV, Garshev AV, Churagulov BR, Boujday S, Portes P, Colbeau-Justin C (2005) J Photochem Photobiol Chem 172:19. doi: https://doi.org/10.1016/j.jphotochem.2004.11.004 CrossRefGoogle Scholar
  13. 13.
    Djaoued Y, Bruning R, Bersani D, Lottici PP, Badilescu S (2004) Mater Lett 58:2618. doi: https://doi.org/10.1016/j.matlet.2004.03.034 CrossRefGoogle Scholar
  14. 14.
    Banfi G, Degiorgio V, Ricard D (1998) Adv Phys 47:447. doi: https://doi.org/10.1080/000187398243537 CrossRefGoogle Scholar
  15. 15.
    Shklover V, Nazeeruddin M-K, Zakeeruddin SM, Barbe C, Kay A, Haibach T et al (1997) Chem Mater 9:430. doi: https://doi.org/10.1021/cm950502p CrossRefGoogle Scholar
  16. 16.
    Francioso L, Taurino AM, Forleo A, Siciliano P (2008) Sens Actuators B 130:70. doi: https://doi.org/10.1016/j.snb.2007.07.074 CrossRefGoogle Scholar
  17. 17.
    Hong J, Cao J, Sun J, Li H, Chen H, Wang M (2003) Chem Phys Lett 380:366. doi: https://doi.org/10.1016/j.cplett.2003.09.037 CrossRefGoogle Scholar
  18. 18.
    Zhang Z, Wang C-C, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871. doi: https://doi.org/10.1021/jp982948± CrossRefGoogle Scholar
  19. 19.
    Shipway AN, Katz E, Willner I (2000) ChemPhysChem 1:18. doi:10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L CrossRefGoogle Scholar
  20. 20.
    Wu Y, Yan H, Huang M, Messer B, Song JH, Yang P (2002) Chem Eur J 8:1260. doi:10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q CrossRefGoogle Scholar
  21. 21.
    Boujday S, Wunsch F, Portes P, Bocquet J-F, Colbeau-Justin C (2004) Solar Energy Mater Solar Cells 83:421. doi: https://doi.org/10.1016/j.solmat.2004.02.035 CrossRefGoogle Scholar
  22. 22.
    Jiu J, Isoda S, Wang F, Adachi M (2006) J Phys Chem B 110:2087. doi: https://doi.org/10.1021/jp055824n CrossRefGoogle Scholar
  23. 23.
    Pradhan SK, Reucroft PJ, Yang F, Dozier A (2003) J Cryst Growth 256:83. doi: https://doi.org/10.1016/S0022-0248(03)01339-3 CrossRefGoogle Scholar
  24. 24.
    Zhao X-M, Xia Y, Whitesides GM (1997) J Mater Chem 7:1069. doi: https://doi.org/10.1039/a700145b CrossRefGoogle Scholar
  25. 25.
    Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539. doi: https://doi.org/10.1021/ja036505h CrossRefGoogle Scholar
  26. 26.
    Lakshmi BB, Dorhout PK, Martin CR (1997) Chem Mater 9:857. doi: https://doi.org/10.1021/cm9605577 CrossRefGoogle Scholar
  27. 27.
    Zhang M, Bando Y, Wada K (2001) J Mater Sci Lett 20:167. doi: https://doi.org/10.1023/A:1006739713220 CrossRefGoogle Scholar
  28. 28.
    Sadeghzadeh Attar A, Mirdamadi Sh, Hajiesmaeilbaigi F, Sasani Ghamsari M (2007) J Mater Sci Technol 23:611Google Scholar
  29. 29.
    Sander M, Cote MJ, Gu W, Kile BM, Tripp CP (2004) Adv Mater 16:2052. doi: https://doi.org/10.1002/adma.200400446 CrossRefGoogle Scholar
  30. 30.
    Mikhaylova M, Kim DK, Toprak M, Muhammed M (2003) Mat Res Soc Symp Proc 750:1Google Scholar
  31. 31.
    Cullity BD (1978) Elements of X-ray diffraction. Addison Wesley Pub, Menlo ParkGoogle Scholar
  32. 32.
    Hong S-S, Lee MS, Park SS, Lee G-D (2003) Catal Today 87:99. doi: https://doi.org/10.1016/j.cattod.2003.10.012 CrossRefGoogle Scholar
  33. 33.
    Diggle JW, Downie TC, Goulding C (1969) Chem Rev 69:365. doi: https://doi.org/10.1021/cr60259a005 CrossRefGoogle Scholar
  34. 34.
    Yoon J-H, Jang S-R, Vittal R, Lee J, Kim K-J (2006) J Photochem Photobiol A: Chem 180:184. doi: https://doi.org/10.1016/j.jphotochem.2005.10.013 CrossRefGoogle Scholar
  35. 35.
    Lakshmi BB, Patrissi CJ, Martin CR (1997) Chem Mater 9:2544. doi: https://doi.org/10.1021/cm970268y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Sadeghzadeh Attar
    • 1
  • M. Sasani Ghamsari
    • 2
  • F. Hajiesmaeilbaigi
    • 2
  • Sh. Mirdamadi
    • 1
    Email author
  • K. Katagiri
    • 3
  • K. Koumoto
    • 3
  1. 1.Department of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Solid State Lasers Research GroupLaser and Optics Research SchoolTehranIran
  3. 3.Department of Applied Chemistry, Graduate School of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations