Journal of Materials Science

, Volume 43, Issue 17, pp 5878–5883 | Cite as

Fracture toughness analysis of anisotropic nickel-based single crystal superalloys at high temperature

  • Z. X. Wen
  • N. X. Hou
  • Z. X. Dou
  • Z. F. Yue


The purpose of this article is intended to study the fracture toughness of anisotropic nickel-based single crystal superalloys at elevated temperature by compact tension (CT) specimen in experiment method. The special attention is put on the orientation and temperature dependence of mechanical properties of single crystal as well as thickness effect of specimen. The experimental results show that crystallographic orientation and temperature have much complex effect on fracture toughness. The difference of fracture toughness of single crystal for different crystallographic orientation at low temperature is much greater than that at high temperature. The nickel-based single crystal specimen may merely become less anisotropic with the increase of the ambient temperature seems as more multi-slip action appears. The fracture mode of the specimens transfers from brittle to ductile as the temperature increases; also, the fracture toughness of single crystal for the same orientation becomes larger with the decreasing of the thickness of single crystal specimen.


Fracture Toughness Slip System Crystallographic Orientation Critical Resolve Shear Stress Compact Tension Specimen 



The work was supported by the National Natural Science Foundation of China (10472094, 50375124), Chinese Aviation Research Foundation (02C53011). These supports are gratefully acknowledged.


  1. 1.
    Drugan WJ (2001) J Mech Phys Solids 49:2155. doi: CrossRefGoogle Scholar
  2. 2.
    Ichitsubo T, Koumoto D, Hirao M et al (2003) Acta Mater 51:4863. doi: CrossRefGoogle Scholar
  3. 3.
    Prasad SC, Rao IJ, Rajagopal KR (2005) Acta Mater 53:669. doi: CrossRefGoogle Scholar
  4. 4.
    Nazmy M, Denk J, Baumann R et al (2003) Scripta Mater 48:519. doi: CrossRefGoogle Scholar
  5. 5.
    Hederson MB, Martins JW (1996) Acta Mater 44(1):111. doi: CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Rice JR, Nikolic R (1985) J Mech Phys Solids 33:595. doi: CrossRefGoogle Scholar
  8. 8.
    Kysar JW, Briant CL (2002) Acta Mater 50:2367. doi: CrossRefGoogle Scholar
  9. 9.
    Flouriot S, Forest S, Cailletaud G et al (2003) Int J Fract 124:43. doi: CrossRefGoogle Scholar
  10. 10.
    Flouriot S, Forest S, Remy L (2003) Comput Mater Sci 26:61. doi: CrossRefGoogle Scholar
  11. 11.
    Marchal N, Flouriot S, Forest S et al (2006) Comput Mater Sci 37:42. doi: CrossRefGoogle Scholar
  12. 12.
    Zhao LG, O’Dowd NP, Busso EP (2006) J Mech Phys Solids 54:288. doi: CrossRefGoogle Scholar
  13. 13.
    Yue ZF, Lu ZZ, Yang ZG (2003) J Aerosp Power 18(4):477Google Scholar
  14. 14.
    Yue ZF, Yang ZG, Lu ZZ (2002) Chin J Aeronaut 15(1):239CrossRefGoogle Scholar
  15. 15.
    Yue ZF, Lu ZZ, Zhou L (1997) Acta Metall Sin 33(3):265Google Scholar
  16. 16.
  17. 17.
    Yue ZF, Yu QM, Wen ZX et al (2008) The design of structure and strength of nickel-based single crystal turbine blade. Science Press, BeijingGoogle Scholar
  18. 18.
    Wen ZX, Yue ZF (2007) Mater Sci Eng A 456:189. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Z. X. Wen
    • 1
  • N. X. Hou
    • 1
  • Z. X. Dou
    • 1
  • Z. F. Yue
    • 1
  1. 1.Department of Engineering MechanicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations