Journal of Materials Science

, Volume 43, Issue 17, pp 5867–5877 | Cite as

Comparison of two contact models in the simulation of friction stir welding process

  • Z. ZhangEmail author


Two contact models are used to simulate the thermo-mechanical interaction process in friction stir welding. Comparison shows that the classical Coulomb friction model can be accurate enough for the simulation of friction stir welding in lower angular velocity. But in higher angular velocity, the classical Coulomb friction model fails to work due to the increase of the dynamic effect of the welding tool. Because the shear failure of material is considered in modified Coulomb friction model, the increase of the frictional stress on the tool–plate interface is limited by the shear failure. So, this model can keep valid even when the angular velocity of the welding tool is increased to a high level.


Welding Friction Stir Welding Friction Stir Welding Contact Model Plate Interface 



This work was supported by the National Natural Science Foundation (Nos. 10302007, 10421202, and 10225212), the National High Technology Research and Development Program of China (2006AA09Z326) and Science Research Foundation of Dalian University of Technology. The author would like to thank Prof. Z.Y. Ma at the Institute of Metal Research in Chinese Academy of Sciences for his valuable discussions and suggestions.


  1. 1.
    Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) Friction stir welding, International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8Google Scholar
  2. 2.
    Squillace A, De Fenzo A, Giorleo G, Bellucci F (2004) J Mater Process Technol 152:97. doi: CrossRefGoogle Scholar
  3. 3.
    Reynolds AP, Tang W, Khandkar Z, Khan JA, Lindner K (2005) Sci Technol Weld Join 10(2):190. doi: CrossRefGoogle Scholar
  4. 4.
    Colegrove PA, Shercliff HR (2003) Sci Technol Weld Join 8(5):360. doi: CrossRefGoogle Scholar
  5. 5.
    Chen CM, Kovacevic R (2004) Int J Mach Tools Manuf 44:1205. doi: CrossRefGoogle Scholar
  6. 6.
    David SA, DebRoy T (1992) Science 257:497. doi: CrossRefGoogle Scholar
  7. 7.
    Khandkar MZH, Khan JA, Reynolds AP (2003) Sci Technol Weld Join 8(3):165. doi: CrossRefGoogle Scholar
  8. 8.
    Mandal S, Williamson K (2006) J Mater Process Technol 174:190. doi: CrossRefGoogle Scholar
  9. 9.
    Bastier A, Maintournam MH, Dang Van K, Roger F (2006) Sci Technol Weld Join 11(3):278. doi: CrossRefGoogle Scholar
  10. 10.
    Song M, Kovacevic R (2003) Int J Mach Tools Manuf 43:605. doi: CrossRefGoogle Scholar
  11. 11.
    Schmidt H, Hattel J (2005) Model Simul Mater Sci Eng 13:77. doi: CrossRefGoogle Scholar
  12. 12.
    Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Mater Charact 49:95. doi: CrossRefGoogle Scholar
  13. 13.
    Colligan K (1999) Weld Res, Suppl Weld J:229Google Scholar
  14. 14.
    Li Y, Murr LE, McClure JC (1999) Mater Sci Eng A 271:213. doi: CrossRefGoogle Scholar
  15. 15.
    Muthukumaran S, Mukherjee SK (2006) Sci Technol Weld Join 11(3):337. doi: CrossRefGoogle Scholar
  16. 16.
    Reynolds AP (2000) Sci Technol Weld Join 5(2):120. doi: CrossRefGoogle Scholar
  17. 17.
    Buffa G, Hua J, Shivpuri R, Fratini L (2006) Mater Sci Eng A 419:389. doi: CrossRefGoogle Scholar
  18. 18.
    Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Acta Mater 55:883. doi: CrossRefGoogle Scholar
  19. 19.
    Zhang HW, Zhang Z, Chen JT (2005) Mater Sci Eng A (403):340. doi: CrossRefGoogle Scholar
  20. 20.
    Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62. doi: CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Zhang HW (2008) Int J Adv Manuf Technol 37:279. doi: CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Zhang HW (2007) Sci Technol Weld Join 12(3):226. doi: CrossRefGoogle Scholar
  23. 23.
    Nandan R, Roy GG, Lienert TJ, DebRoy T (2006) Sci Technol Weld Join 11(5):526. do Scholar
  24. 24.
    Feng AH, Ma ZY (2007) Scr Mater 56:397. doi: CrossRefGoogle Scholar
  25. 25.
    Ma ZY, Sharma SR, Mishra RS (2006) Mater Sci Eng A 433:269. doi: CrossRefGoogle Scholar
  26. 26.
    Zhang HW, Zhong WX, Wu CH, Liao AH (2006) Int J Mech Sci 48:176. doi: CrossRefGoogle Scholar
  27. 27.
    Zhang HW, Wang H, Wriggers P, Schrefler BA (2005) Comput Mech 36(6):444. doi: CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Zhang HW (2007) Int J Adv Manuf Technol 35:86. doi: CrossRefGoogle Scholar
  29. 29.
    Liu HJ, Fujii H, Maeda M, Nogi K (2003) J Mater Sci Lett 22:441. doi: CrossRefGoogle Scholar
  30. 30.
    Lin SB, Zhao YH, Wu L (2006) Mater Sci Technol 22(8):995. doi: CrossRefGoogle Scholar
  31. 31.
    Murr LE, Liu G, McClure JC (1997) J Mater Sci Lett 16:1801. doi: CrossRefGoogle Scholar
  32. 32.
    Fratini L, Buffa G (2005) Int J Mach Tools Manuf 45:1188. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and MechanicsDalian University of TechnologyDalianChina

Personalised recommendations