Journal of Materials Science

, Volume 43, Issue 23–24, pp 7481–7487 | Cite as

XRD profile analysis characterization of ultrafine grained Al–Mg alloys

  • Markus DinkelEmail author
  • Florian Pyczak
  • Johannes May
  • Heinz Werner Höppel
  • Mathias Göken
Ultrafine-Grained Materials


The effect of impurities on the crystallite sizes and dislocation densities of ECAP-processed aluminum–magnesium alloys is studied by X-ray diffraction. It is shown that with increasing magnesium content the achievable reduction in crystallite size with ECAP eventually reaches a saturation state and a further reduction of the structural size seems unlikely. Simultaneously the dislocation density increases to a plateau level with increasing Mg content. In annealing experiments the microstructural stability of AlMg0.5 and the resulting changes are investigated by XRD profile analysis. It becomes evident that annealing leads to a moderate increase in crystallite size up to a temperature where accelerated crystallite growth begins. XRD results prior and after fatigue testing show an increase in crystallite size accompanied by a decrease in dislocation density.


Crystallite Size Dislocation Density Fatigue Testing Equal Channel Angular Pressing Total Strain Amplitude 



We are grateful for the help, assistance and tutorial of Prof. Dr. T. Ungár concerning the MWP-fit method.


  1. 1.
    Valiev RZ, Ishlamagaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33. doi: CrossRefGoogle Scholar
  3. 3.
    Xu C, Furukawa M, Horita Z, Langdon TG (2003) Adv Eng Mater 5(5):359. doi: CrossRefGoogle Scholar
  4. 4.
    Honeywell Electronic Materials,
  5. 5.
    Ribárik G, Ungár T, Gubicza J (2001) J Appl Cryst 34:669. doi: CrossRefGoogle Scholar
  6. 6.
    Ungár T, Gubicza J, Ribárik G, Borbély A (2001) J Appl Cryst 34:298–310. doi: CrossRefGoogle Scholar
  7. 7.
    Wilkens M (1970) Phys Status Solidi (a) 2:359. doi: CrossRefGoogle Scholar
  8. 8.
    Langford JI, Louer D, Scardi P (2000) J Appl Cryst 33:964. doi: CrossRefGoogle Scholar
  9. 9.
    Gubicza J, Ribárik G, Bakonyi I, Ungár T (2001) J Nanosci Nanotechnol 1(3):343. doi: CrossRefGoogle Scholar
  10. 10.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328. doi: CrossRefGoogle Scholar
  11. 11.
    Wilkens M, Eckert K (1964) Z Naturforschg 19a:459Google Scholar
  12. 12.
    May J, Dinkel MK, Amberger D, Höppel HW, Göken M (2007) Metal Mater Trans A 38A:1941. doi: CrossRefGoogle Scholar
  13. 13.
    May J, Höppel HW, Göken M (2004) Scr Mater 53:189. doi: CrossRefGoogle Scholar
  14. 14.
    Höppel HW, May J, Göken M (2008) In: 6th International Conference on Low Cycle Fatigue. DVM, Berlin; accepted for publicationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Markus Dinkel
    • 1
    Email author
  • Florian Pyczak
    • 2
  • Johannes May
    • 3
  • Heinz Werner Höppel
    • 1
  • Mathias Göken
    • 1
  1. 1.Department of Materials Science and Engineering, Institute 1: General Materials PropertiesUniversity ErlangenErlangenGermany
  2. 2.Institute for Materials ResearchGKSS Research Centre GeesthachtGeesthachtGermany
  3. 3.AREVA NP GmbHErlangenGermany

Personalised recommendations