Journal of Materials Science

, Volume 44, Issue 6, pp 1442–1448 | Cite as

TiO2 foams with poly-(d,l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds

  • Saša Novak
  • John Druce
  • Qi-Zhi Chen
  • Aldo R. BoccacciniEmail author
Syntactic and Composite Foams


TiO2 foam-like scaffolds with pore size ~300 μm and >95% porosity were fabricated by the foam replication method. A new approach to improve the structural integrity of the as-sintered foams, which exhibit extremely low compression strength, was explored by coating them with poly-(d,l-lactic acid) (PDLLA) or PDLLA/Bioglass® layers. The PDLLA coating was shown to improve the mechanical properties of the scaffold: the compressive strength was increased by a factor of ~7. The composite coating involving Bioglass® particles was shown to impart the rutile TiO2 scaffold with the necessary bioactivity for the intended applications in bone tissue engineering. A dense hydroxyapatite layer formed on the surface of the foams upon immersion in simulated body fluid for 1 week.


Foam Compressive Strength Rutile Simulated Body Fluid Bioactive Glass 


  1. 1.
    Hench LL, Polak JM (2002) Science 295:1014. doi: CrossRefGoogle Scholar
  2. 2.
    Agrawal CM, Ray RB (2001) J Biomed Mater Res 55:141. doi:10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-JCrossRefGoogle Scholar
  3. 3.
    Hollister S (2005) Nat Mater 4:518. doi: CrossRefGoogle Scholar
  4. 4.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biomaterials 27:3413. doi: CrossRefGoogle Scholar
  5. 5.
    Haugen H, Will J, Koehler A, Hopfner U, Aigner J, Wintermantel E (2004) J Eur Ceram Soc 24:661. doi: CrossRefGoogle Scholar
  6. 6.
    Meretoja VV, Tirri T, Aaritalo V, Walboomers XF, Jansen JA, Narhi T (2007) Tissue Eng 13:855. doi: CrossRefGoogle Scholar
  7. 7.
    Petronis S, Eckert KL, Gold J, Wintermantel E (2001) J Mater Sci Mater Med 12:523. doi: CrossRefGoogle Scholar
  8. 8.
    Boccaccini AR, Blaker JJ, Maquet V, Chung W, Jerome R, Nazhat SN (2006) J Mater Sci 41:3999. doi: CrossRefGoogle Scholar
  9. 9.
    Li P, Kangasniemi I, de Groot K (1994) J Am Ceram Soc 77(5):1307. doi: CrossRefGoogle Scholar
  10. 10.
    Wu JM, Liu JF, Hayakawa S, Tsuru K, Osaka A (2007) J Mater Sci Mater Med 18:1529. doi: CrossRefGoogle Scholar
  11. 11.
    Jokinen M, Patsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) J Biomed Mater Res 42:295. doi:10.1002/(SICI)1097-4636(199811)42:2<295::AID-JBM15>3.0.CO;2-ICrossRefGoogle Scholar
  12. 12.
    Polonchuk L, Elbel J, Eckert L, Blum J, Wintermantel E, Eppenberger HM (2000) Biomaterials 21:539CrossRefGoogle Scholar
  13. 13.
    Karageorgiou V, Kaplan D (2005) Biomaterials 26:5674. doi: CrossRefGoogle Scholar
  14. 14.
    Schwartzwalder K (1963) US Patent No. 3090094Google Scholar
  15. 15.
    Chen QZ, Thompson I, Boccaccini AR (2006) Biomaterials 27:2414. doi: CrossRefGoogle Scholar
  16. 16.
    Chen QZ, Boccaccini AR (2006) J Biomed Mater Res A 77A(3):445. doi: CrossRefGoogle Scholar
  17. 17.
    Hench LL (1998) J Am Ceram Soc 81:1705CrossRefGoogle Scholar
  18. 18.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721. doi: CrossRefGoogle Scholar
  19. 19.
    Hwu Y, Yao YD, Cheng NF, Tung CY, Lin HM (1997) Nanostruct Mater 9:355. doi: CrossRefGoogle Scholar
  20. 20.
    Muthutantri AI, Huang J, Edirisinghe MJ (2008) J R Soc Interface. doi: CrossRefGoogle Scholar
  21. 21.
    Muthutantri AI, Huang J, Edirisinghe MJ, Bretcanu O, Boccaccini AR (2008) Biomed Mater 3:025009, 14 ppCrossRefGoogle Scholar
  22. 22.
    Chen QZ, Zhang HB, Wang DZ, Edirisinghe MJ, Boccaccini AR (2006) J Am Ceram Soc 89:1534. doi: CrossRefGoogle Scholar
  23. 23.
    Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier G, Hamaide T (2007) J Eur Ceram Soc 27:2679. doi: CrossRefGoogle Scholar
  24. 24.
    Miao X, Tan LP, Tan LS, Huang X (2007) Mater Sci Eng C 27:274. doi: CrossRefGoogle Scholar
  25. 25.
    Miao X, Tan DM, Li J, Xiao Y, Crawford R (2008) Acta Biomater 4:638. doi: CrossRefGoogle Scholar
  26. 26.
    Kim HW, Knowles JC, Kim HE (2004) J Biomed Mater Res 70B:240. doi: CrossRefGoogle Scholar
  27. 27.
    Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Pergamon, Oxford, pp 429–452Google Scholar
  28. 28.
    Yunos DM, Bretcanu O, Boccaccini AR (2008) J Mater Sci 43:4433. doi: CrossRefGoogle Scholar
  29. 29.
    Nalla RK, Kinney JH, Ritchie RO (2003a) Nat Mater 2:164. doi: CrossRefGoogle Scholar
  30. 30.
    Nalla RK, Kinney JH, Ritchie RO (2003b) Biomaterials 24:3955. doi: CrossRefGoogle Scholar
  31. 31.
    Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R (2002) Biomaterials 23:3871. doi: CrossRefGoogle Scholar
  32. 32.
    Helen W, Merry CL, Blaker JJ, Gough JE (2007) Biomaterials 28:2010. doi: CrossRefGoogle Scholar
  33. 33.
    Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) Biomaterials 25:3013. doi: CrossRefGoogle Scholar
  34. 34.
    Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jérôme R (2002) J Mater Sci Mater Med 13:1207. doi: CrossRefGoogle Scholar
  35. 35.
    Boccaccini AR, Gerhardt L-C, Rebeling S, Blaker JJ (2005) Compos Part A 36:721. doi: CrossRefGoogle Scholar
  36. 36.
    Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) J Biomed Mater Res 64A:164. doi: CrossRefGoogle Scholar
  37. 37.
    Wu J-M, Hayakawa S, Tsuru K, Osaka A (2004) J Am Ceram Soc 87:1635CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Saša Novak
    • 1
  • John Druce
    • 2
  • Qi-Zhi Chen
    • 2
  • Aldo R. Boccaccini
    • 2
    Email author
  1. 1.Department of Nanostructured MaterialsJ. Stefan InstituteLjubljanaSlovenia
  2. 2.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations