Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5884–5890 | Cite as

Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties

  • Qunwei Tang
  • Jihuai WuEmail author
  • Jianming Lin
  • Qinghua Li
  • Shijun Fan
Article

Abstract

A two-step polymerization technique is introduced to synthesize polyacrylamide/polyacrylate interpenetrating network (PAM/PAC IPN) hydrogels. The swelling ratio of the IPN hydrogel increases with the increase of the PAC content in PAM/PAC, and is smaller than the traditional PAM or PAC superabsorbents. A non-Fickian mechanism is observed in the swelling process, and the swelling changes from non-Fickian mechanism to Fickian mechanism with the increase of polyacrylate dosage in the hydrogel. The IPN hydrogel has typical pH-sensitivity and on–off effect. The deswelling properties and methyl orange dye removal are carried out based on the chelation of the carboxylic/carboxylate groups on the hydrogels with multivalent cations in solution. The hydrogel is expected to be used in the removal of heavy metal ions and dyes.

Keywords

Methyl Orange Multivalent Cation Swell Hydrogel Superabsorbent Polymer Neutralization Degree 

Notes

Acknowledgements

The authors thank for joint support by the National Natural Science Foundation of China (No. 50572030 and No. 50372022) and the Key Scientific Technology Program of Fujian, China (No. 2005HZ01-4 and No. 2004HZ01-3).

References

  1. 1.
    Buchholz F, Grajam A (1997) Modern superabsorbent polymer technology. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Tang QW, Lin JM, Wu JH (2007) J Appl Polym Sci 104:735. doi: https://doi.org/10.1002/app.25531 CrossRefGoogle Scholar
  3. 3.
    Fanta GF, Doane WM (1986) Grafted starches. In: Wurzburg OB (ed) Modified starches: properties and uses. CRC Press, pp 149–178Google Scholar
  4. 4.
    Tang QW, Lin JM, Wu JH (2007) Carbohydr Polym 67:332. doi: https://doi.org/10.1016/j.carbpol.2006.05.026 CrossRefGoogle Scholar
  5. 5.
    Yetimoglu EK, Kahraman MV, Ercan O (2007) React Funct Polym 67:451. doi: https://doi.org/10.1016/j.reactfunctpolym.2007.02.007 CrossRefGoogle Scholar
  6. 6.
    Yan WL, Bai RB (2005) Water Res 39:688. doi: https://doi.org/10.1016/j.watres.2004.11.007 CrossRefGoogle Scholar
  7. 7.
    Ali AE, Shawky HA, Rehim HA (2003) Eur Polym J 39:2337. doi: https://doi.org/10.1016/S0014-3057(03)00150-2 CrossRefGoogle Scholar
  8. 8.
    Owens DE, Jian Y, Fang JE, Slaughter BV, Chen YH, Peppas NA (2007) Macromolecules 40:7306. doi: https://doi.org/10.1021/ma071089x CrossRefGoogle Scholar
  9. 9.
    Zhang J, Peppas NA (2000) Macromolecules 33:102. doi: https://doi.org/10.1021/ma991398q CrossRefGoogle Scholar
  10. 10.
    Tang QW, Wu JH, Lin JM (2008) e-Polymers 21:1Google Scholar
  11. 11.
    Tang QW, Wu JH, Lin JM (2008) Carbohydr Polym 73:315. doi: https://doi.org/10.1016/j.carbpol.2007.12.030 CrossRefGoogle Scholar
  12. 12.
    Yang ZW, Jiang YS, Xu LX, Wen B, Li FF, Sun SM et al (2005) J Mater Chem 15:1807. doi: https://doi.org/10.1039/b418015c CrossRefGoogle Scholar
  13. 13.
    Wu JH, Wei YL, Lin JM (2003) Polymer (Guildf) 44:6513. doi: https://doi.org/10.1016/S0032-3861(03)00728-6 CrossRefGoogle Scholar
  14. 14.
    Omidan H, Hashemi SA, Sammes PG (1998) Polymer (Guildf) 39:6697. doi: https://doi.org/10.1016/S0032-3861(98)00095-0 CrossRefGoogle Scholar
  15. 15.
    Li A, Wang AQ (2005) Eur Polym J 41:1630. doi: https://doi.org/10.1016/j.eurpolymj.2005.01.028 CrossRefGoogle Scholar
  16. 16.
    Firestone BA, Siegel RA (1991) J Appl Polym Sci 43:901. doi: https://doi.org/10.1002/app.1991.070430507 CrossRefGoogle Scholar
  17. 17.
    Pourjavadi A, Barzegar SH, Zeidabadi F (2007) React Funct Polym 67:644. doi: https://doi.org/10.1016/j.reactfunctpolym.2007.04.007 CrossRefGoogle Scholar
  18. 18.
    Mullarney MP, Seery T, Weiss RA (2006) Polymer (Guildf) 47:3845. doi: https://doi.org/10.1016/j.polymer.2006.03.096 CrossRefGoogle Scholar
  19. 19.
    Lin YH, Liang HF, Chung CK (2005) Biomaterials 26:2105. doi: https://doi.org/10.1016/j.biomaterials.2004.06.011 CrossRefGoogle Scholar
  20. 20.
    Zimmermann H, Wahlisch F, Baier C (2006) Biomaterials 28:1327. doi: https://doi.org/10.1016/j.biomaterials.2006.11.032 CrossRefGoogle Scholar
  21. 21.
    Singh B, Chauhan GS, Bhatt SS (2006) Carbohydr Polym 64:50. doi: https://doi.org/10.1016/j.carbpol.2005.10.022 CrossRefGoogle Scholar
  22. 22.
    Chauhan GS, Singh B, Chauhan S (2005) Desalination 181:217. doi: https://doi.org/10.1016/j.desal.2005.03.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qunwei Tang
    • 1
  • Jihuai Wu
    • 1
    Email author
  • Jianming Lin
    • 1
  • Qinghua Li
    • 1
  • Shijun Fan
    • 1
  1. 1.The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations