Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7366–7371 | Cite as

Developing superplasticity in a magnesium AZ31 alloy by ECAP

  • Roberto B. FigueiredoEmail author
  • Terence G. Langdon
Ultrafine-Grained Materials

Abstract

The processing of a magnesium AZ31 alloy by equal-channel angular pressing refines the grain size to ~2.2 μm, but annealing for 30 min at 673 K coarsens the grains to ~6.0 μm. Despite this microstructural instability, the alloy is superplastic when pulled in tension at temperatures in the range of 623–723 K with elongations up to >1000% at strain rates at and below 10−4 s−1. Experiments within the superplastic regime show the strain rate sensitivity is ~0.5 and the activation energy is close to the value for grain boundary diffusion. It is demonstrated by calculation that the experimental results are in good agreement with a model for superplasticity based on grain boundary sliding.

Keywords

Flow Stress Magnesium Alloy Boundary Diffusion Strain Rate Sensitivity AZ31 Alloy 

Notes

Acknowledgements

One of the authors (RBF) was supported by a CAPES/Fulbright Scholarship. This work was supported by the U.S. Army Research Office under Grant No. W911NF-05-1-0046.

References

  1. 1.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: https://doi.org/10.1016/j.pmatsci.2006.02.003 CrossRefGoogle Scholar
  2. 2.
    Langdon TG (1982) Metall Trans 13A:689CrossRefGoogle Scholar
  3. 3.
    Xu C, Horita Z, Furukawa M, Langdon TG (2004) J Mater Eng Perform 13:683. doi: https://doi.org/10.1361/10599490421385 CrossRefGoogle Scholar
  4. 4.
    Kawasaki M, Figueiredo RB, Xu C, Langdon TG (2007) Metall Mater Trans 38A:1891CrossRefGoogle Scholar
  5. 5.
    Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi: https://doi.org/10.1007/s10853-006-0954-2 CrossRefGoogle Scholar
  6. 6.
    Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083. doi: https://doi.org/10.1016/j.actamat.2006.09.027 CrossRefGoogle Scholar
  7. 7.
    Lapovok R, Cottam R, Thomson PF, Estrin Y (2005) J Mater Res 20:1375. doi: https://doi.org/10.1557/JMR.2005.0180 CrossRefGoogle Scholar
  8. 8.
    Lapovok R, Thomson PF, Cottam R, Estrin Y (2005) Mater Sci Eng A 410–411:390. doi: https://doi.org/10.1016/j.msea.2005.08.067 CrossRefGoogle Scholar
  9. 9.
    Figueiredo RB, Langdon TG (2008) Adv Eng Mater 10:37. doi: https://doi.org/10.1002/adem.200700315 CrossRefGoogle Scholar
  10. 10.
    Myahara Y, Horita Z, Langdon TG (2006) Mater Sci Eng A 420:240. doi: https://doi.org/10.1016/j.msea.2006.01.043 CrossRefGoogle Scholar
  11. 11.
    Mabuchi M, Ameyama K, Iwasaki H, Higashi K (1999) Acta Mater 47:2047. doi: https://doi.org/10.1016/S1359-6454(99)00094-4 CrossRefGoogle Scholar
  12. 12.
    Lin HK, Huang JC, Langdon TG (2005) Mater Sci Eng A 402:250. doi: https://doi.org/10.1016/j.msea.2005.04.018 CrossRefGoogle Scholar
  13. 13.
    Watanabe H, Takara A, Somekawa H, Mukai T, Higashi K (2005) Scr Mater 52:449. doi: https://doi.org/10.1016/j.scriptamat.2004.11.011 CrossRefGoogle Scholar
  14. 14.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143. doi: https://doi.org/10.1016/1359-6462(96)00107-8 CrossRefGoogle Scholar
  15. 15.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328. doi: https://doi.org/10.1016/S0921-5093(98)00750-3 CrossRefGoogle Scholar
  16. 16.
    Vagarali SS, Langdon TG (1982) Acta Metall 30:1157. doi: https://doi.org/10.1016/0001-6160(82)90009-8 CrossRefGoogle Scholar
  17. 17.
    Jin L, Dongliang L, Mao D, Zeng X, Ding W (2006) J Alloy Comp 426:148. doi: https://doi.org/10.1016/j.jallcom.2006.02.018 CrossRefGoogle Scholar
  18. 18.
    Su CW, Lu L, Lai MO (2006) Mater Sci Eng A 434:227. doi: https://doi.org/10.1016/j.msea.2006.06.103 CrossRefGoogle Scholar
  19. 19.
    Kim HK, Kim WJ (2004) Mater Sci Eng A 385:300CrossRefGoogle Scholar
  20. 20.
    Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Mater Sci Eng A 410–411:324. doi: https://doi.org/10.1016/j.msea.2005.08.123 CrossRefGoogle Scholar
  21. 21.
    Zuberová Z, Estrin Y, Lamark TT, Janecek M, Hellmig RJ, Krieger M (2007) J Mater Proc Tech 184:294. doi: https://doi.org/10.1016/j.jmatprotec.2006.11.098 CrossRefGoogle Scholar
  22. 22.
    Janecek M, Popov M, Krieger MG, Hellmig RJ, Estrin Y (2007) Mater Sci Eng A 462:116. doi: https://doi.org/10.1016/j.msea.2006.01.174 CrossRefGoogle Scholar
  23. 23.
    Langdon TG (1994) Mater Sci Eng A 174:225. doi: https://doi.org/10.1016/0921-5093(94)91092-8 CrossRefGoogle Scholar
  24. 24.
    Valiev RZ, Langdon TG (1993) Acta Metall Mater 41:949. doi: https://doi.org/10.1016/0956-7151(93)90029-R CrossRefGoogle Scholar
  25. 25.
    Langdon TG (1994) Acta Metall Mater 42:2437. doi: https://doi.org/10.1016/0956-7151(94)90322-0 CrossRefGoogle Scholar
  26. 26.
    Frost HJ, Ashby MF (1982) Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford, UKGoogle Scholar
  27. 27.
    Somekawa H, Hosokawa H, Watanabe H, Higashi K (2003) Mater Sci Eng A 339:328. doi: https://doi.org/10.1016/S0921-5093(02)00127-2 CrossRefGoogle Scholar
  28. 28.
    del Valle JA, Carreño F, Ruano OA (2007) Scr Mater 57:829. doi: https://doi.org/10.1016/j.scriptamat.2007.07.002 CrossRefGoogle Scholar
  29. 29.
    Langdon TG (2002) Metall. Mater Trans 33A:249CrossRefGoogle Scholar
  30. 30.
    del Valle JA, Pérez-Prado MT, Ruano OA (2005) Metall. Mater Trans 36A:1427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations