Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5952–5955 | Cite as

Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films

  • Zengsheng Ma
  • Shiguo LongEmail author
  • Yong Pan
  • Yichun Zhou
Article

Abstract

Nanoindentation creep tests in Ni thin films with 3,000 nm thickness were performed with different loading times (5, 10, 20, 30, and 50 s) under the holding load 5,000 μN and holding time 30 s to investigate the dependence of the indentation creep behavior on the loading rate. The results show that significant indentation loading rate sensitivity on stress exponent and hardness was found, which shows that the stress exponent increases with indentation loading rate. In contrast, the elastic modulus decreases slightly (more or less 1%) due to a longer loading time. Based on the experimental results, we infer that the creep phenomena observed were probably induced by plasticity.

Keywords

Stress Exponent Transient Creep Indentation Creep Double Logarithmic Plot Carbon Steel Sheet 

Notes

Acknowledgements

This work was financially supported by the National Nature Science Foundation (NNSF) of China (No. 10702057, 10772157 and 50531060), Fok Ying Tong Education Foundation (No.104014), and National Science Found for Distinguished Young Scholars of China (10525211).

References

  1. 1.
    Feng G, Ngan AHW (2001) Scr Mater 45:971. doi: https://doi.org/10.1016/S1359-6462(01)01120-4 CrossRefGoogle Scholar
  2. 2.
    Klinger L, Rabkin E (2003) Scr Mater 48:1475. doi: https://doi.org/10.1016/S1359-6462(03)00080-0 CrossRefGoogle Scholar
  3. 3.
    Fischer-Cripps AC (2004) Mater Sci Eng A 385:74. doi: https://doi.org/10.1016/j.msea.2004.04.070 CrossRefGoogle Scholar
  4. 4.
    Wang F, Xu KW (2004) Mater Lett 58:2345. doi: https://doi.org/10.1016/j.matlet.2004.02.043 CrossRefGoogle Scholar
  5. 5.
    Lu L, Sui ML, Lu K (2001) Scr Mater 287:1463Google Scholar
  6. 6.
    Torre FD, Van SH, Victoria M (2002) Acta Mater 50:3957. doi: https://doi.org/10.1016/S1359-6454(02)00198-2 CrossRefGoogle Scholar
  7. 7.
    Ma ZS, Long SG, Zhou YC, Pan Y (2008) Scr Mater 59:195. doi: https://doi.org/10.1016/j.scriptamat.2008.03.014 CrossRefGoogle Scholar
  8. 8.
    Li H, Ngan AHW (2004) J Mater Res 19:513. doi: https://doi.org/10.1557/jmr.2004.19.2.513 CrossRefGoogle Scholar
  9. 9.
    Courtney TH (1990) Mechanical behavior of materials. McGrill-Hill, Inc, New York, p 80Google Scholar
  10. 10.
    Yang S, Zhang YW, Zeng KY (2004) J Appl Phys 95:3655. doi: https://doi.org/10.1063/1.1651341 CrossRefGoogle Scholar
  11. 11.
    Raman V, Berriche R (1992) J Mater Res 7:627. doi: https://doi.org/10.1557/JMR.1992.0627 CrossRefGoogle Scholar
  12. 12.
    Bhattacharya AK, Nix WD (1988) Int J Solids Struct 24:1287. doi: https://doi.org/10.1016/0020-7683(88)90091-1 CrossRefGoogle Scholar
  13. 13.
    Feng G, Ngan AHW (2002) J Mater Res 17:660. doi: https://doi.org/10.1557/JMR.2002.0094 CrossRefGoogle Scholar
  14. 14.
    Tang B, Ngan AHW (2003) J Mater Res 18:1141. doi: https://doi.org/10.1557/JMR.2003.0156 CrossRefGoogle Scholar
  15. 15.
    Ngan AHW, Tang B (2002) J Mater Res 17:2604. doi: https://doi.org/10.1557/JMR.2002.0377 CrossRefGoogle Scholar
  16. 16.
    Cao Z, Zhang X (2007) Scr Mater 56:249. doi: https://doi.org/10.1016/j.scriptamat.2006.09.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zengsheng Ma
    • 1
  • Shiguo Long
    • 1
    Email author
  • Yong Pan
    • 1
  • Yichun Zhou
    • 1
  1. 1.Key Laboratory of Low Dimensional Materials & Application Technology of Ministry of Education, Faculty of Materials, Optoelectronics and PhysicsXiangtan UniversityXiangtanChina

Personalised recommendations