Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7488–7494 | Cite as

Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding

  • V. YamakovEmail author
  • E. Saether
  • E. H. Glaessgen
Ultrafine-Grained Materials

Abstract

Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics—finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction–displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum–atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum–atomistic interface, and continues its propagation in the atomistic environment. This study is a step toward relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

Keywords

Grain Boundary Intergranular Fracture Atomistic Simulation Continuum Domain Dislocation Nucleation 

Notes

Acknowledgement

V. Yamakov is sponsored through cooperative agreement NCC-1-02043 with the National Institute of Aerospace.

References

  1. 1.
    Yamakov V, Phillips DR, Saether E, Glaessgen EH (2007) In: Bozzolo GH, Noebe RD, Abel P (eds) Applied computational materials modeling: theory, experiment, and simulation. Springer. ISBN 978-0-387-23117-4Google Scholar
  2. 2.
    Glaessgen E, Saether E, Phillips D, Yamakov V (2006) 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference and exhibit, Newport, RI, May 1–4, 2006Google Scholar
  3. 3.
    Dugdale DS (1960) J Mech Phys Solids 8:100. doi: https://doi.org/10.1016/0022-5096(60)90013-2 CrossRefGoogle Scholar
  4. 4.
    Barenblatt GI (1962) Adv Appl Mech 7:55CrossRefGoogle Scholar
  5. 5.
    Yamakov V, Saether E, Phillips DR, Glaessgen EH (2006) J Mech Phys Solids 54:1899. doi: https://doi.org/10.1016/j.jmps.2006.03.004 CrossRefGoogle Scholar
  6. 6.
    Tvergaard V, Hutchinson JW (1996) Int J Solids Struct 33:3297. doi: https://doi.org/10.1016/0020-7683(95)00261-8 CrossRefGoogle Scholar
  7. 7.
    Beer G (1985) Int J Numer Methods Eng 21:585. doi: https://doi.org/10.1002/nme.1620210402 CrossRefGoogle Scholar
  8. 8.
    Gall K, Horstemeyer MF, Van Schilfgaarde M, Baskes MI (2000) J Mech Phys Solids 48:2183. doi: https://doi.org/10.1016/S0022-5096(99)00086-1 CrossRefGoogle Scholar
  9. 9.
    Komanduri R, Chandrasekaran N, Raff LM (2001) Int J Mech Sci 43:2237. doi: https://doi.org/10.1016/S0020-7403(01)00043-1 CrossRefGoogle Scholar
  10. 10.
    Spearot D, Jacob KI, Mcdowell DL (2004) Mech Mater 36:825CrossRefGoogle Scholar
  11. 11.
    Raynolds JE, Smith JR, Zhao G-L, Srolovitz DJ (1996) Phys Rev B 53:13883. doi: https://doi.org/10.1103/PhysRevB.53.13883 CrossRefGoogle Scholar
  12. 12.
    Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Phys Rev B 59:3393. doi: https://doi.org/10.1103/PhysRevB.59.3393 CrossRefGoogle Scholar
  13. 13.
    Saether E, Yamakov V, Glaessgen E (2007) 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conferenceGoogle Scholar
  14. 14.
    Saether E, Yamakov V, Glaessgen E (submitted) Int J Numer Meth EngGoogle Scholar
  15. 15.
    Cleri F (2001) Phys Rev B 65:014107. doi: https://doi.org/10.1103/PhysRevB.65.014107 CrossRefGoogle Scholar
  16. 16.
    Parrinello M, Rahman A (1981) J Appl Phys 52:7182. doi: https://doi.org/10.1063/1.328693 CrossRefGoogle Scholar
  17. 17.
    Nose S (1984) J Chem Phys 81:511. doi: https://doi.org/10.1063/1.447334 CrossRefGoogle Scholar
  18. 18.
    Yamakov V, Saether E, Phillips DR, Glaessgen EH (2007) J Mater Sci 42:1466. doi: https://doi.org/10.1007/s10853-006-1176-3 CrossRefGoogle Scholar
  19. 19.
    Yamakov V, Saether E, Phillips DR, Glaessgen EH (2005) Phys Rev Lett 95:015502. doi: https://doi.org/10.1103/PhysRevLett.95.015502 CrossRefGoogle Scholar
  20. 20.
    Murakami Y (ed) (1988) Stress intensity factors handbook, vol 1. Pergamon Press, New YorkGoogle Scholar
  21. 21.
    Klimontovich YL (1995) Statistical theory of open systems, vol 1. Kluwer Academic Publishers, NetherlandsCrossRefGoogle Scholar

Copyright information

©  US Government 2008

Authors and Affiliations

  1. 1.National Institute of AerospaceHamptonUSA
  2. 2.NASA Langley Research CenterHamptonUSA

Personalised recommendations