Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7299–7306 | Cite as

Recent development in grain refinement by hydrostatic extrusion

  • Malgorzata Lewandowska
  • Krzysztof J. KurzydlowskiEmail author
Ultrafine-Grained Materials

Abstract

Hydrostatic extrusion is an efficient method of grain refinement to the nanometer scale in metallic materials. The paper shows that it can be used directly to obtain a mean grain size smaller than 100 nm with a significant fraction of high angle grain boundaries in aluminum alloys, titanium, and iron. It is also demonstrated that grain size reduction to this level in some other materials, e.g., nickel, requires a combination of hydrostatic extrusion (HE), as the final operation, after some other methods of severe plastic deformation (SPD). Grain refinement in metallic materials by HE has a significant effect on their properties with a significant increase in mechanical strength and improvement of wear and corrosion resistance while maintaining an acceptable level of plasticity.

Keywords

Aluminum Alloy High Strain Rate Severe Plastic Deformation Extrude Material Size Refinement 

Notes

Acknowledgement

This work was supported by the Polish Ministry of Science and Higher Education (Grant No 3T08A 06430).

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: https://doi.org/10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  2. 2.
    Hughes DA, Hansen N (2000) Acta Mater 48:2985. doi: https://doi.org/10.1016/S1359-6454(00)00082-3 CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: https://doi.org/10.1016/j.pmatsci.2006.02.003 CrossRefGoogle Scholar
  4. 4.
    Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A 393:344. doi: https://doi.org/10.1016/j.msea.2004.11.007 CrossRefGoogle Scholar
  5. 5.
    Richert M, Liu Q, Hansen N (1999) Mater Sci Eng A 260:275. doi: https://doi.org/10.1016/S0921-5093(98)00988-5 CrossRefGoogle Scholar
  6. 6.
    Cherukuri B, Nedkova TS, Srinivasan R (2005) Mater Sci Eng A 410–411:394. doi: https://doi.org/10.1016/j.msea.2005.08.024 CrossRefGoogle Scholar
  7. 7.
    Kurzydłowski KJ (2006) Mat Sci Forum 503–504:341CrossRefGoogle Scholar
  8. 8.
    Lewandowska M, Pachla W, Kurzydłowski KJ (2007) Int J Mat Res [formely Z Metallkd] 98:172CrossRefGoogle Scholar
  9. 9.
    Kurzydłowski KJ, Lewandowska M (2007) Mat Sci Forum 561–565:913CrossRefGoogle Scholar
  10. 10.
    Lewandowska M (2006) Solid State Phenom 114:109CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Zdunek J, Widlicki P, Garbacz H, Mizera J, Kurzydłowski KJ (2006) Solid State Phenom 114:171CrossRefGoogle Scholar
  13. 13.
    Widlicki P, Garbacz H, Lewandowska M, Pachla W, Kulczyk M, Kurzydłowski KJ (2006) Solid State Phenom 114:145CrossRefGoogle Scholar
  14. 14.
    Kulczyk M, Pachla W, Świderska-Środa A, Krasilnikov N, Diduszko R, Mazur A et al (2006) Solid State Phenom 114:51CrossRefGoogle Scholar
  15. 15.
    Topolski K, Garbacz H, Pachla W, Kurzydlowski KJ (2007) Adv Mat Sci 7:114Google Scholar
  16. 16.
    Garbacz H, Lewandowska M, Pachla W, Kurzydłowski KJ (2006) J Microsc 223:272. doi: https://doi.org/10.1111/j.1365-2818.2006.01646.x CrossRefGoogle Scholar
  17. 17.
    Lewandowska M, Krawczyńska A Kurzydlowski KJ (2008) J Nucl Mater (accepted)Google Scholar
  18. 18.
    Kulczyk M (2007) PhD thesis, Warsaw University of TechnologyGoogle Scholar
  19. 19.
    Kulczyk M, Pachla W, Mazur A, Sus-Ryszkowska M, Krasilnikov N, Kurzydlowski KJ (2007) Mat Sci Poland 25:991Google Scholar
  20. 20.
    Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Acta Mater 54:3055. doi: https://doi.org/10.1016/j.actamat.2006.02.046 CrossRefGoogle Scholar
  21. 21.
    Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789. doi: https://doi.org/10.1016/S1359-6454(02)00174-X CrossRefGoogle Scholar
  22. 22.
    Kurzydlowski KJ, Ralph B (1995) Quantitative description of materials microstructure. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Apps PJ, Bowen JR, Prangnell PB (2003) Acta Mater 51:2811CrossRefGoogle Scholar
  24. 24.
    Murayama M, Horita Z, Hono K (2001) Acta Mater 49:21. doi: https://doi.org/10.1016/S1359-6454(00)00308-6 CrossRefGoogle Scholar
  25. 25.
    Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743. doi: https://doi.org/10.1016/j.actamat.2003.08.032 CrossRefGoogle Scholar
  26. 26.
    Garbacz H, Grądzka-Dahlke M, Kurzydłowski KJ (2007) Wear 263:572. doi: https://doi.org/10.1016/j.wear.2006.11.047 CrossRefGoogle Scholar
  27. 27.
    Garbacz H, Pisarek M, Kurzydłowski KJ (2007) Biomol Eng 24:559. doi: https://doi.org/10.1016/j.bioeng.2007.08.007 CrossRefGoogle Scholar
  28. 28.
    Pisarek M, Kędzierzawki P, Janik-Czachor M, Kurzydłowski KJ (2007) Electr Comm 9:2463. doi: https://doi.org/10.1016/j.elecom.2007.07.028 CrossRefGoogle Scholar
  29. 29.
    Klassek D, Suter T, Schmutz P, Pachla W, Lewandowska M, Kurzydłowski KJ et al (2006) Solid State Phenom 114:189CrossRefGoogle Scholar
  30. 30.
    Pachla W, Kulczyk M, Świderka-Środa A, Lewandowska M, Garbacz H, Mazur A et al (2006) Proc of 9th Int Conf on Mat. Forming ESAFORM-2006, Glasgow, UK, April 26–28, 2006, p 535Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Malgorzata Lewandowska
    • 1
  • Krzysztof J. Kurzydlowski
    • 1
    Email author
  1. 1.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarszawaPoland

Personalised recommendations