Journal of Materials Science

, Volume 43, Issue 15, pp 5385–5389 | Cite as

Modifying the oxygen adsorption properties of YBaCo4O7 by Ca, Al, and Fe doping

  • Song Wang
  • Haoshan Hao
  • Baofeng Zhu
  • Jianfeng Jia
  • Xing HuEmail author


The doping effect of Ca, Al, and Fe on the oxygen adsorption properties of YBaCo4O7 was investigated by thermogravimetry (TG) method. It was found that the original YBaCo4O7 oxygen adsorption properties can be modified greatly by Ca, Al, and Fe doping. Ca doping in Y sites eliminates the oxygen adsorption at low temperature (~300 °C) but the oxygen adsorption properties at high temperature is almost unchanged. Minor Al doping in Co sites eliminates the oxygen adsorption hump at high temperature, but the hump at low temperature is preserved. Fe appearance in YBaCo3Al1−xFexO7 seems to weaken the effect of Al doping, so the oxygen hump at high temperature emerges again. The doping effect was discussed based on elements valence, binding energy between cations and oxygen ions, and distortion of crystal structure.


Y2O3 Oxygen Adsorption Lattice Stability Octahedra Form Zigzag Ribbon 


  1. 1.
    Valldor M, Andersson M (2002) Solid State Sci 4:923. doi: CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Huq A, Mitchell JF, Zheng H, Chapon LC, Radaelli PG, Knight KS et al (2006) J Solid State Chem 179:1136. doi: CrossRefGoogle Scholar
  4. 4.
    Maignan A, Caignaert V, Pelloquin D, Hébert S, Pralong V, Hejtmanek J et al (2006) Phys Rev B 74:165110. doi: CrossRefGoogle Scholar
  5. 5.
    Chapon LC, Radaelli PG, Zheng H, Mitchell JF (2006) Phys Rev B 74:172401. doi: CrossRefGoogle Scholar
  6. 6.
    Hao H, Chen C, Pan L, Gao J, Hu X (2007) Phys B 387:98. doi: CrossRefGoogle Scholar
  7. 7.
    Hao H, Zhang X, He Q, Chen C, Hu X (2007) Solid State Commun 141:591. doi: CrossRefGoogle Scholar
  8. 8.
    Tsipis EV, Khalyavin DD, Shiryaev SV, Redkina KS, Nunez P (2005) Mater Chem Phys 92:33. doi: CrossRefGoogle Scholar
  9. 9.
    Nakayama N, Mizota T, Ueda Y, Sokolov AN, Vasiliev AN (2006) J Magn Magn Mater 300:98. doi: CrossRefGoogle Scholar
  10. 10.
    Caignaert V, Maignan A, Pralong V, Hebert S, Pelloquin D (2006) Solid State Sci 8:1160CrossRefGoogle Scholar
  11. 11.
    Karppinen M, Yamauchi H, Otani S, Fujita T, Motohashi T, Huang Y-H et al (2006) Chem Mater 18:490. doi: CrossRefGoogle Scholar
  12. 12.
    Hao H, Cui J, Chen C, Pan L, Hu J, Hu X (2006) Solid State Ionics 177:631. doi: CrossRefGoogle Scholar
  13. 13.
    Chmaissem O, Zheng H, Huq A, Stephens PW, Mitchell JF (2008) J Solid State Chem 181:664. doi: CrossRefGoogle Scholar
  14. 14.
    Tsipis EV, Kharton VV, Frade JR (2006) Solid State Ionics 177:1823. doi: CrossRefGoogle Scholar
  15. 15.
    Shannon RD (1976) Acta Crystallogr A 32:751. doi: CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Schweika W, Valldor M, Lemmens P (2007) Phys Rev Lett 98:067201. doi: CrossRefGoogle Scholar
  18. 18.
    Shao ZP, Xiong GX, Yang WS (2001) J Inorg Mater 16:23Google Scholar
  19. 19.
    Yaremchenko AA, Patrakeev MV, Kharton VV, Marques FMB, Leonidov IA, Kozhevnikov VL (2004) Solid State Sci 6:357. doi: CrossRefGoogle Scholar
  20. 20.
    Katsuki M, Wang S, Dokiya M, Hashimoto T (2003) Solid State Ionics 156:453. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Song Wang
    • 1
  • Haoshan Hao
    • 2
    • 1
  • Baofeng Zhu
    • 1
  • Jianfeng Jia
    • 1
  • Xing Hu
    • 1
    Email author
  1. 1.School of Physical Engineering and Material Physics LaboratoryZhengzhou UniversityZhengzhouChina
  2. 2.Department of Mathematical and Physical SciencesHenan Institute of EngineeringZhengzhouChina

Personalised recommendations