Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5679–5684 | Cite as

Structure and polytypic faults in Ba4NdMn3O12 compound

  • H. YangEmail author
  • Z. E. Cao
  • X. Shen
  • W. J. Feng
  • J. L. Jiang
  • J. F. Dai
  • R. C. Yu
Interface Science

Abstract

We have studied the structure and polytypic defect formation in the 12R perovskite-type Ba4NdMn3O12 compound. Its structure was characterized using transmission electron microscopy (TEM). Like in the 12R ordered oxides of Ba4CeMn3O12 and Ba4PrMn3O12 (Fuentes et al., J. Solid State Chem. 177 (2004) 714), a cationic ordering between Nd and Mn is also expected to be established in Ba4NdMn3O12 with the Nd ions located in the corner-sharing octahedra and the Mn ions located in the face-sharing octahedra. We also observed in the Ba4NdMn3O12 phase two types of polytypic faults, i.e., the extrinsic hexagonal-type fault with the stacking sequence …cchhhcc… and the extrinsic cubic-type fault with the stacking sequence …hhccchh….

Keywords

Perovskite Electron Diffraction Pattern TlCl BaO2 Close Packed Layer 

Notes

Acknowledgements

This work was supported by the Foundation of Gansu Educational Committee (0703B-01), the Doctoral Research Grant of Lanzhou University of Technology (SB10200701), the Natural Science Foundation of Gansu Province (Grant Nos. ZS032-B25-019 and 3ZS061-A25-039), and State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials (Grant Nos. SKL07003 and SKL05009). R. C. Yu thanks the National Natural Science Foundation of China (Grant Nos. 10774168 and 50621061) and the State Key Development Program for Basic Research of China (Grant Nos. 2005CB623602 and 2007CB925003) for the support.

References

  1. 1.
    Cussen EJ, Battle PD (2000) Chem Mater 12:831. doi: https://doi.org/10.1021/cm991144j CrossRefGoogle Scholar
  2. 2.
    Negas T, Roth RS (1971) J Solid State Chem 3:323. doi: https://doi.org/10.1016/0022-4596(71)90068-5 CrossRefGoogle Scholar
  3. 3.
    Parras M, Alonso J, González-Calbet JM, Vallet-Regi M (1993) Solid State Ionics 63–65:614. doi: https://doi.org/10.1016/0167-2738(93)90168-3 CrossRefGoogle Scholar
  4. 4.
    González-Calbet JM, Parras M, Alonso JM, Vallet-Regí M (1993) J Solid State Chem 106:99. doi: https://doi.org/10.1006/jssc.1993.1268 CrossRefGoogle Scholar
  5. 5.
    Parras M, González-Calbet JM, Alonso J, Vallet-Regí M (1994) J Solid State Chem 113:78. doi: https://doi.org/10.1006/jssc.1994.1344 CrossRefGoogle Scholar
  6. 6.
    Parras M, Alonso J, González-Calbet JM, Vallet-Regí M (1995) J Solid State Chem 117:21. doi: https://doi.org/10.1006/jssc.1995.1241 CrossRefGoogle Scholar
  7. 7.
    Rabbow C, MullerBuschbaum H (1994) Z Naturforsch (B) 49:1277CrossRefGoogle Scholar
  8. 8.
    Serpil Gö1nen Z, Gopalakrishnan J, Eichhorn BW, Greene RL (2001) Inorg Chem 40:4996Google Scholar
  9. 9.
    Frenzen S, MullerBuschbaum H (1994) Z Naturforsch (B) 50:585CrossRefGoogle Scholar
  10. 10.
    Keith GM, Kirk CA, Sarma K, Alford NM, Cussen EJ, Rosseinsky MJ et al (2004) Chem Mater 16:2007. doi: https://doi.org/10.1021/cm035317n CrossRefGoogle Scholar
  11. 11.
    Fuentes AF, Boulahya K, Amador U (2004) J Solid State Chem 177:714. doi: https://doi.org/10.1016/j.jssc.2003.08.025 CrossRefGoogle Scholar
  12. 12.
    Créon N, Michel C, Hervieu M, Maignan A, Raveau B (2003) Solid State Sci 5:243. doi: https://doi.org/10.1016/S1293-2558(02)00098-5 CrossRefGoogle Scholar
  13. 13.
    Quarez E, Abraham F, Mentré O (2003) J Solid State Chem 176:137. doi: https://doi.org/10.1016/S0022-4596(03)00379-7 CrossRefGoogle Scholar
  14. 14.
    Bendraoua A, Quarez E, Abraham F, Mentré O (2004) J Solid State Chem 177:1416. doi: https://doi.org/10.1016/j.jssc.2003.11.022 CrossRefGoogle Scholar
  15. 15.
    Floros N, Michel C, Hervieu M, Raveau B (2000) Chem Mater 12:3197. doi: https://doi.org/10.1021/cm000277y CrossRefGoogle Scholar
  16. 16.
    Floros N, Michel C, Hervieu M, Raveau B (2002) J Solid State Chem 168:11. doi: https://doi.org/10.1006/jssc.2002.9667 CrossRefGoogle Scholar
  17. 17.
    Cowley JM, Moodie AF (1957) Acta Crystallogr 10:609. doi: https://doi.org/10.1107/S0365110X57002194 CrossRefGoogle Scholar
  18. 18.
    Yang H, Tang YK, Yao LD, Zhang W, Li QA, Li FY et al (2007) J Alloy Compd 432:283. doi: https://doi.org/10.1016/j.jallcom.2006.05.117 CrossRefGoogle Scholar
  19. 19.
    Suarda E, Fauthb F, Martinc C, Maignanc A, Millanged F, Kellere L (2003) J Magn Magn Mater 264:221. doi: https://doi.org/10.1016/S0304-8853(03)00209-9 CrossRefGoogle Scholar
  20. 20.
    González-Calbet JM, Parras M, Alonso J, Vallet-Regí M (1994) J Solid State Chem 111:202. doi: https://doi.org/10.1006/jssc.1994.1218 CrossRefGoogle Scholar
  21. 21.
    Yao LD, Yang H, Zhang W, Li FY, Jin CQ, Yu RC (2006) J Appl Phys 100:023907. doi: https://doi.org/10.1063/1.2218469 CrossRefGoogle Scholar
  22. 22.
    Yang H, Yang RF, Li QA, Li FY, Jin CQ, Yu RC (2006) J Phys Chem Solids 67:2365. doi: https://doi.org/10.1016/j.jpcs.2006.06.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. Yang
    • 1
    • 2
    Email author
  • Z. E. Cao
    • 2
  • X. Shen
    • 2
  • W. J. Feng
    • 2
  • J. L. Jiang
    • 2
  • J. F. Dai
    • 2
  • R. C. Yu
    • 3
  1. 1.State Key Laboratory of Gansu Advanced Non-ferrous Metal MaterialsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouPeople’s Republic of China
  3. 3.Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsBeijingPeople’s Republic of China

Personalised recommendations