Journal of Materials Science

, Volume 43, Issue 23–24, pp 7438–7444 | Cite as

Evolution of microstructure of an iron aluminide during severe plastic deformation by heavy rolling

  • D. G. MorrisEmail author
  • I. Gutierrez-Urrutia
  • M. A. Muñoz-Morris
Ultrafine-Grained Materials


Severe plastic deformation is generally achieved using novel techniques such as Equal Channel Angular Pressing (ECAP) or High Pressure Torsion (HPT), but may also be achieved by more conventional methods such as very heavy rolling. Microstructure evolution is examined in an iron aluminide intermetallic rolled to strains up to 3.3 using Transmission Electron Microscopy (TEM) and orientation determinations by Kikuchi line analysis. After the highest strains the microstructure is still characterized as a recovered submicron-scale dislocation structure, with generally low angles across the various boundaries, and a high density of dislocations inside these boundaries. The structures observed show a dependence on orientation of the underlying parent grain, with [001] orientations showing poorer rearrangement to cellular structures than grains with [113–111] orientations.


Severe Plastic Deformation Equal Channel Angular Pressing High Pressure Torsion Cell Block Boundary Misorientation 



We would like to acknowledge the financial support of the Spanish Ministry of Education and Science under project number MAT2006–01827, as well as the award of a Juan de la Cierva post-doctoral fellowship for one of the authors (I.G.).


  1. 1.
    Hansen N, Huang X, Highes DA (2001) Mater Sci Eng A 317:3. doi:–5093(01)01191-1 CrossRefGoogle Scholar
  2. 2.
    Mishin OV, Juul Jensen D, Hansen N (2003) Mater Sci Eng A 342:320. doi: CrossRefGoogle Scholar
  3. 3.
    Raabe D, Zhao Z, Park SJ, Roters F (2002) Acta Mater 50:421. doi: CrossRefGoogle Scholar
  4. 4.
    Raabe D, Mao W (1995) Philos Mag A 71:805. doi: CrossRefGoogle Scholar
  5. 5.
    Kobayashi S, Zaefferer S, Schneider A, Raabe D, Frommeyer G (2004) Mater Sci Eng A 387–389:950. doi: CrossRefGoogle Scholar
  6. 6.
    Valiev RZ, Ivanisenko Yu V, Rauch EF, Baudelet B (1996) Acta Mater 44:4705. doi: CrossRefGoogle Scholar
  7. 7.
    Zhilyaev AP, Nurislamova GV, Kim B-V, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753. doi: CrossRefGoogle Scholar
  8. 8.
    Lin H, Xu C, Han BQ, Lavernia EJ, Langdon TG (2004) In: Zhu YT, Langdon TG, Valiev RZ, Semiatin SL, Shin DH, Lowe TC (eds) Ultrafine grained materials III. TMS (The Minerals, Metals and Materials Society), USA, p 523Google Scholar
  9. 9.
    Belyakov A, Kimura Y, Tsuzaki K (2006) Acta Mater 54:2521. doi: CrossRefGoogle Scholar
  10. 10.
    Todaka Y, Umemoto M, Yin J, Liu Z, Tsuchiya K (2007) Mater Sci Eng A 462:264. doi: CrossRefGoogle Scholar
  11. 11.
    Rentenberger C, Karnthaler HP (2005) Acta Mater 53:3031. doi: CrossRefGoogle Scholar
  12. 12.
    Rentenberger C, Karnthaler HP (2007) Int J Mater Res 98:255CrossRefGoogle Scholar
  13. 13.
    Morris DG, Gunther S (1995) Intermetallics 3:483. doi: CrossRefGoogle Scholar
  14. 14.
    Morris-Muñoz MA, Dodge A, Morris DG (1999) Nanostructured Mater 11:873. doi: CrossRefGoogle Scholar
  15. 15.
    Courtney TH, Aikin BJM, Maurice D, Rydin RW, Kosmac T (1993) In: deBarbadillo JJ, Froes FH, Schwarz R (eds) Mechanical alloying for structural applications. ASM, Materials Park, p 1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. G. Morris
    • 1
    Email author
  • I. Gutierrez-Urrutia
    • 1
  • M. A. Muñoz-Morris
    • 1
  1. 1.Department of Physical MetallurgyCENIM, CSICMadridSpain

Personalised recommendations