Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7513–7518 | Cite as

Texture evolution of Mg during high-pressure torsion

  • B. J. Bonarski
  • E. Schafler
  • B. Mingler
  • W. Skrotzki
  • B. Mikulowski
  • M. J. ZehetbauerEmail author
Ultrafine-Grained Materials

Abstract

Polycrystalline magnesium of 99.8 wt.% purity was subjected to high-pressure torsion (HPT) at room temperature. A special technique was developed in order to enable HPT of Mg up to very high shear strains of 115 and hydrostatic pressures of 4 GPa. The texture development during HPT was investigated by systematic X-ray texture measurements. It can be described by a stationary oblique B fibre characteristic of hexagonal metals subjected to simple shear. From the measured shear strain and pressure dependences of the B fibre and from microstructure investigations by TEM, it is concluded that also mechanisms of both dynamic and of static recrystallization contribute to the texture evolution.

Keywords

Hydrostatic Pressure Shear Strain Texture Evolution Transmission Electron Microscopy Investigation Maximum Shear Strain 

Notes

Acknowledgements

The authors are grateful for financial support from the Focus Project “Bulk Nanostructured Materials” of University of Vienna, and from the PhD Program “I022-N Experimental Materials Science-Nanostructured Materials” of University of Vienna. They kindly acknowledge support by Grant No. 11.11.180.255 provided by the Polish Ministry of Science and Higher Education. Parts of this work have been achieved within an Ernst Mach scholarship of the Austrian Exchange Services OEAD, and within a scholarship of the Central European Exchange Programme for University Studies (CEEPUS). The authors gratefully acknowledge the financial support of the Austrian Science Fund Project Nr. 17095N02.

References

  1. 1.
    Valiev RZ (2004) Nature Mater 3:511. doi: https://doi.org/10.1038/nmat1180 CrossRefGoogle Scholar
  2. 2.
    Bonarski BJ, Schafler E, Holzleithner Ch, Mikułowski B, Zehetbauer MJ (2008) Arch Metall Mater 53:117Google Scholar
  3. 3.
    Beausir B, Tóth LS, Neale KW (2007) Acta Mater 55:2695. doi: https://doi.org/10.1016/j.actamat.2006.12.021 CrossRefGoogle Scholar
  4. 4.
    Skrotzki W, Scheerbaum N, Oertel C-G, Brokmeier H-G, Suwas S, Tóth LS (2007) Acta Mater 55:2211. doi: https://doi.org/10.1016/j.actamat.2006.08.018 CrossRefGoogle Scholar
  5. 5.
    Schafler E, Dubravina A, Mingler B, Karnthaler HP, Zehetbauer MJ (2006) Mater Sci Forum 503–504:51CrossRefGoogle Scholar
  6. 6.
    Dubravina A, Zehetbauer MJ, Schafler E, Alexandrov I (2004) Mater Sci Eng A 387–389:817. doi: https://doi.org/10.1016/j.msea.2004.03.093 CrossRefGoogle Scholar
  7. 7.
    Zehetbauer M, Stüwe HP, Vorhauer A, Schafler E, Kohout J (2003) Adv Eng Mater 5:330. doi: https://doi.org/10.1002/adem.200310090 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B. J. Bonarski
    • 1
    • 2
  • E. Schafler
    • 1
  • B. Mingler
    • 1
  • W. Skrotzki
    • 3
  • B. Mikulowski
    • 2
  • M. J. Zehetbauer
    • 1
    Email author
  1. 1.Faculty of Physics, Physics of Nanostructured MaterialsUniversity of ViennaViennaAustria
  2. 2.Faculty of Non-Ferrous Metals, Department of Structure and Mechanics of SolidsAGH – University of Science and TechnologyCracowPoland
  3. 3.Institut für StrukturphysikTechnische Universität DresdenDresdenGermany

Personalised recommendations