Journal of Materials Science

, Volume 43, Issue 15, pp 5390–5393 | Cite as

Fabricating Au–Ag core-shell composite films for surface-enhanced Raman scattering

  • Yingping Huang
  • Yong YangEmail author
  • Zhong Chen
  • Xin Li
  • Masayuki NogamiEmail author


Surface-enhanced Raman scattering (SERS) integrates high levels of sensitivity with spectroscopic precision, and thus, has tremendous potential for chemical and biomolecular sensing. The key to the wider application of Raman spectroscopy using roughened metallic surfaces is the development of highly enhancing substrates for analytical purposes, i.e., for better detection sensitivity of trace contaminants and pollutants. Here, we have prepared Au, Ag, AuAg multilayer, and Au@Ag films on glass substrates for SERS-active substrates. The Au@Ag film shows a much stronger SERS signal for trans-bis(4-pyridyl)ethylene (BPE) molecules than those from pure Au, Ag, and AuAg films, indicating the Au@Ag film is more powerful than pure Au, Ag, and AuAg film as SERS active substrates. The enhanced surface Raman scattering signals were attributed to the local field enhancement in the core-shell structure.


SERS AuAg Film SERS Active Substrate AgNO3 Aqueous Solution Localize Electric Field Enhancement 



This work was supported by the National Natural Science Foundation of China (No. 50701018) and Research Fund for the Doctoral Program of Higher Education of China (No. 20070251031).


  1. 1.
    Nie S, Emory SR (1997) Science 275:1102. doi: CrossRefGoogle Scholar
  2. 2.
    Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA et al (1995) Science 267:1629. doi: CrossRefGoogle Scholar
  3. 3.
    Wei A, Kim B, Sadtler B, Tripp SL (2001) ChemPhysChem 2:743. doi:10.1002/1439-7641(20011217)2:12<743::AID-CPHC743>3.0.CO;2-1CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735. doi: CrossRefGoogle Scholar
  6. 6.
    Li X, Xu W, Zhang J, Jia H, Yang B et al (2004) Langmuir 20:1298. doi: CrossRefGoogle Scholar
  7. 7.
    Nikoobakht B, Wang J, El-Sayed MA (2002) Chem Phys Lett 366:17. doi: CrossRefGoogle Scholar
  8. 8.
    Yang Y, Matsubara S, Hayakawa T, Xiong L, Nogami M (2007) J Phys Chem C 111:9095. doi: CrossRefGoogle Scholar
  9. 9.
    Yang Y, Shi J, Kawamura G, Nogami M (2008) Scr Mater 58:862. doi: CrossRefGoogle Scholar
  10. 10.
    Yang Y, Nogami M, Shi J, Chen H, Ma G, Tang S (2006) Appl Phys Lett 88:081110. doi: CrossRefGoogle Scholar
  11. 11.
    Yang Y, Xiong L, Shi J, Nogami M (2006) Nanotechnology 17:2670. doi: CrossRefGoogle Scholar
  12. 12.
    Lu L, Wang H, Zhao Y, Xi S, Zhang H, Hu J, Zhao B, (2002) Chem Commun 144Google Scholar
  13. 13.
    Chaney SB, Shanmukh S, Dluhy RA, Zhao YP (2005) Appl Phys Lett 87:031908. doi: CrossRefGoogle Scholar
  14. 14.
    Mulvaney SP, He L, Natan MJ, Keating CD (2003) J Raman Sepctrosc 34:163. doi: CrossRefGoogle Scholar
  15. 15.
    Abid J, Girault HH, Brevet PF (2001) Chem Commun (Camb) 829. doi:
  16. 16.
    Pande S, Ghosh SK, Praharaj S, Panigrahi BS, Jana S, Pal A, Tsukuda T, Pal T (2007) J Phys Chem C 111:10806. doi: CrossRefGoogle Scholar
  17. 17.
    Yang Y, Shi J, Tanaka T, Nogami M (2007) Langmuir 23:12042. doi: CrossRefGoogle Scholar
  18. 18.
    Pavan Kumar GV, Shruthi B, Vibha B, Schok Reddy A, Kundu TK, Narayana C (2007) J Phys Chem C 111:4388. doi: CrossRefGoogle Scholar
  19. 19.
    Wang DS, Kerker M (1981) Phys Rev B 24:1777. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Alan G. MacDiarmid Research Institute for Renewable EnergyChina Three Gorges UniversityYichangChina
  2. 2.Department of Materials Science and EngineeringNagoya Institute of TechnologyShowa, NagoyaJapan
  3. 3.The College of Electrical Engineering and Information TechnologyChina Three Gorges UniversityYichangChina

Personalised recommendations