Journal of Materials Science

, Volume 43, Issue 15, pp 5358–5367 | Cite as

EXAFS investigation of low temperature nitrided stainless steel

  • Jette Oddershede
  • Thomas L. Christiansen
  • Kenny Ståhl
  • Marcel A. J. Somers


Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen contents: (1) nitriding in pure NH3 and (2) nitriding in pure NH3 followed by reduction in H2. The majority of the Cr atoms in the stainless steel after treatment 1 and 2 was associated with a nitrogen–chromium bond distance comparable to that of the chemical compound CrN. The possibility of the occurrence of mixed substitutional–interstitial atom clusters or coherent nitride platelets in nitrogen-expanded austenite is discussed.


Austenite Rietveld Refinement Chromium Atom Nitriding Temperature Iron Nitrides 



Financial support of the Danish Research Council for Technology and Production Sciences under grant 274-05-0230 is gratefully acknowledged.


  1. 1.
    Bell T, Akamatsu K (eds) (2000) Stainless Steel 2000—Proceedings of the 1st International Conference on ‘Thermochemical Surface Engineering of Stainless Steel’, Osaka, Japan, November 2000, Maney PublishingGoogle Scholar
  2. 2.
    Sun Y, Li X, Bell T (1999) Mater Sci Technol 15:1171CrossRefGoogle Scholar
  3. 3.
    Cao Y, Ernst F, Michal GM (2003) Acta Mater 51:4171. doi: CrossRefGoogle Scholar
  4. 4.
    Christiansen T, Somers MAJ (2005) Surf Eng 21:445. doi: CrossRefGoogle Scholar
  5. 5.
    Czerwiec T, He H, Weber S, Dong C, Michel H (2006) Surf Coat Tech 200:5289. doi: CrossRefGoogle Scholar
  6. 6.
    Christiansen T, Somers MAJ (2006) Metall Mater Trans A 37:675. doi: CrossRefGoogle Scholar
  7. 7.
    Oda K, Kondo N, Shibata K (1990) ISIJ Int 30(8):625. doi: CrossRefGoogle Scholar
  8. 8.
    Kizler P, Frommeyer G, Rosenkranz R (1994) Z Metallkd 85:705Google Scholar
  9. 9.
    Munoz-Paez A, Peruchena JIF, Espinós JP, Justo Á, Castaneda F, Díaz-Moreno S et al (2002) Chem Mater 14:3220. doi: CrossRefGoogle Scholar
  10. 10.
    Jones DM, Stephenson A, Hendry A, Jack KH (1979) Conf Strenght Met Alloys 5:737Google Scholar
  11. 11.
    Oddershede J, Christiansen TL, Ståhl K (2008) J Appl Cryst 41:537. doi: CrossRefGoogle Scholar
  12. 12.
    Cheng L, Böttger A, de Keijser TT, Mittemeijer EJ (1990) Scr Metall Mater 24:509. doi: CrossRefGoogle Scholar
  13. 13.
    Carlson S, Clausen M, Gridneva L, Sommarin B, Svensson C (2006) J Synchrotron Radiat 13:359. doi: CrossRefGoogle Scholar
  14. 14.
    Ressler T (2004) WinXAS Ver. 3.10Google Scholar
  15. 15.
    Zabinsky SI, Rehr JJ, Aukudinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995. doi: CrossRefGoogle Scholar
  16. 16.
    Venables JA (1962) Philos Mag 7:35. doi: CrossRefGoogle Scholar
  17. 17.
    Jack H (1973) Proc Heat Treat 73:39Google Scholar
  18. 18.
    Somers MAJ, Lankreijer RM, Mittemeijer EJ (1989) Philos Mag A 59(2):353. doi: CrossRefGoogle Scholar
  19. 19.
    Driver JH, Handley JR, Jack KH (1972) Scand J Metallurgy 1:211Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jette Oddershede
    • 1
  • Thomas L. Christiansen
    • 2
  • Kenny Ståhl
    • 1
  • Marcel A. J. Somers
    • 2
  1. 1.Department of ChemistryTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations