Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5282–5290 | Cite as

Doping of lanthanum cobaltite by Mn: thermal, magnetic, and catalytic effect

  • Gina PecchiEmail author
  • Claudia Campos
  • M. Graciela Jiliberto
  • Yanko Moreno
  • Octavio Peña
Article

Abstract

Great differences in crystallographic phases, magnetic properties, and catalytic activity were detected in lanthanum cobaltite and cobaltite modified with the insertion of 10 wt.% of Mn. Atomic absorption spectroscopy, BET area measurements, XRD analysis, TPR, and FT-IR suggest that the total insertion of manganese in the LaCoO3 structure is successful. Thermal stability is reached for LaCo0.90Mn0.10O3 up to 973 K without loss of the perovskite structure. The magnetic properties of the as-grown compounds are maintained after a first reduction process up to 723–773 K, while presence of segregated phases is observed after reduction at 973 K. The catalytic activity evaluated in the total combustion of acetyl acetate shows a decrease in the ignition temperature, i.e. an increase in the catalytic activity for the LaCo0.90Mn0.10O3 perovskite. A significant enhancement in the catalytic activity expressed as intrinsic activity, mol m−2 h−1, with the manganese substitution was found.

Keywords

Perovskite Perovskite Structure Temperature Program Reduction LaCoO3 Lanthanum Carbonate 

Notes

Acknowledgement

The authors thank CONICYT (Fondecyt Grant 1060702).

References

  1. 1.
    O’Connell M, Norman AK, Hüttermann CF, Morris MA (1999) Catal Today 47:123. doi: https://doi.org/10.1016/S0920-5861(98)00291-0 CrossRefGoogle Scholar
  2. 2.
    Tejuca LJ, Fierro JLG (eds) (1993) Properties and applications of perovskite-type oxides. Dekker, New YorkGoogle Scholar
  3. 3.
    Voorhoeve JH (1997) In: Burton HH, Garten RL (eds) Advanced materials in catalysis. Academic Press, New York, p 127Google Scholar
  4. 4.
    Hirusta S, Pina MP, Melendez M, Santamaría J (1998) Catal Lett 54:69. doi: https://doi.org/10.1023/A:1019003216521 CrossRefGoogle Scholar
  5. 5.
    Peña O, Antunes AB, Martinez G, Gil V, Moure C (2007) J Magn Magn Mater 310:159. doi: https://doi.org/10.1016/j.jmmm.2006.08.004 CrossRefGoogle Scholar
  6. 6.
    Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 1–2:281. doi: https://doi.org/10.1016/S0167-2738(99)00222-2 CrossRefGoogle Scholar
  7. 7.
    Pecchi G, Reyes P, Zamora R, Campos C, Cadús LE, Barbero BP (2008) Catal Today 133–135:420CrossRefGoogle Scholar
  8. 8.
    Provendier H, Petit C, Estournes C, Libs S, Kienemann A (1999) Appl Catal Gen 180:163. doi: https://doi.org/10.1016/S0926-860X(98)00343-3 CrossRefGoogle Scholar
  9. 9.
    Barbero BP, Andrade Gamboa J, Cadús LE (2006) Appl Catal B Environ 65:21. doi: https://doi.org/10.1016/j.apcatb.2005.11.018 CrossRefGoogle Scholar
  10. 10.
    Inaba H, Hayashi H, Suzuki M (2001) Solid State Ionics 1–2:99. doi: https://doi.org/10.1016/S0167-2738(01)00904-3 CrossRefGoogle Scholar
  11. 11.
    Rao CNR, Raveau B (eds) (1998) Colossal magnetoresistance charge ordering and related properties of manganese oxides. World Scientific, SingaporeGoogle Scholar
  12. 12.
    Tokura Y (2000) Colossal magnetoresistive oxides. Gordon & Breach, New YorkGoogle Scholar
  13. 13.
    Kojima I, Adachi H, Yasumori I (1983) Surf Sci 130:50. doi: https://doi.org/10.1016/0039-6028(83)90259-5 CrossRefGoogle Scholar
  14. 14.
    Spiniccia R, Tofanaria A, Faticantib M, Pettitib I, Porta P (2001) J Mol Catal A 176:247CrossRefGoogle Scholar
  15. 15.
    Courty P, Ajot H, Marcilly C, Delmon B (1973) Power Technol 7:21. doi: https://doi.org/10.1016/0032-5910(73)80005-1 CrossRefGoogle Scholar
  16. 16.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309. doi: https://doi.org/10.1021/ja01269a023 CrossRefGoogle Scholar
  17. 17.
    Vasanthacharya NY, Ganguly P, Rao CNR (1984) J Solid State Chem 53:140. doi: https://doi.org/10.1016/0022-4596(84)90237-8 CrossRefGoogle Scholar
  18. 18.
    Chainani A, Sarma DD, Das I, Sampathkumaran EV (1996) J Phys Condens Matter 8:L631. doi: https://doi.org/10.1088/0953-8984/8/43/001 CrossRefGoogle Scholar
  19. 19.
    Monti DAM, Baiker A (1983) J Catal 83:323. doi: https://doi.org/10.1016/0021-9517(83)90058-1 CrossRefGoogle Scholar
  20. 20.
    Mallet P, Caballero A (1988) J Chem Soc Faraday Trans 84:2369. doi: https://doi.org/10.1039/f19888402369 CrossRefGoogle Scholar
  21. 21.
    Marcos J, Buitrago G, Lombardo A (1987) J Catal 105:95. doi: https://doi.org/10.1016/0021-9517(87)90011-X CrossRefGoogle Scholar
  22. 22.
    Crespin M, Keith W (1981) J Catal 69:359. doi: https://doi.org/10.1016/0021-9517(81)90171-8 CrossRefGoogle Scholar
  23. 23.
    Sis L, Wirtz G (1973) J Appl Phys 44:1. doi: https://doi.org/10.1063/1.1662195 CrossRefGoogle Scholar
  24. 24.
    Yang M, Zhong Y, Liu Z-K (2007) Solid State Ionics 178:1027. doi: https://doi.org/10.1016/j.ssi.2007.04.014 CrossRefGoogle Scholar
  25. 25.
    Olivari AOM, Peña MA, Tascon JM, Tejuca LG (1988) J Mol Catal 45:355. doi: https://doi.org/10.1016/0304-5102(88)80067-1 CrossRefGoogle Scholar
  26. 26.
    Fierro JLG, Peña MA, Tejuca LG (1988) J Mater Sci 23:1018. doi: https://doi.org/10.1007/BF01154005 CrossRefGoogle Scholar
  27. 27.
    Merino N, Barbero B, Ruiz P, Cadús L (2006) J Catal 240:11. doi: https://doi.org/10.1016/j.jcat.2006.03.020 CrossRefGoogle Scholar
  28. 28.
    Bedel L, Roger A, Estournes C, Kiennemann A (2003) Catal Today 100:207. doi: https://doi.org/10.1016/S0920-5861(03)00388-2 CrossRefGoogle Scholar
  29. 29.
    Koponen MJ, Suvanto M, Kallinen K, Kinnunen T-JJ, Harkonen M, Pakkanen TA (2006) Solid State Sci 8:450. doi: https://doi.org/10.1016/j.solidstatesciences.2005.11.008 CrossRefGoogle Scholar
  30. 30.
    Davydov A (1990) Infrared spectroscopy of adsorbed species on the surface of transition metal oxides, chap 1. Wiley, EnglandGoogle Scholar
  31. 31.
    Asai K, Yoneda A, Yokokura O, Tranquada JM, Shirane G, Kohn K (1998) J Phys Soc Jpn 67:290 and references therein. doi: https://doi.org/10.1143/JPSJ.67.290 CrossRefGoogle Scholar
  32. 32.
    Fujine Y, Fujishiro H, Kashiwada Y, Hejtmanek J, Ikebe M (2005) Physica B (Amsterdam) 359–361:1360. doi: https://doi.org/10.1016/j.physb.2005.01.411 CrossRefGoogle Scholar
  33. 33.
    Motin Seikh MD, Sudheendra L, Narayana C, Rao CNR (2004) J Mol Struct 706:121. doi: https://doi.org/10.1016/j.molstruc.2004.03.058 CrossRefGoogle Scholar
  34. 34.
    Hejtmánek J, Jirák Z, Knížek K, Maryško M, Veverka M, Fujishiro H (2004) J Magn Magn Mater 272–276:e283. doi: https://doi.org/10.1016/j.jmmm.2003.12.679 CrossRefGoogle Scholar
  35. 35.
    Pecchi G, Campos C, Peña O, Cadus LE (2008) J Mol Cat A Chem 282:158. doi: https://doi.org/10.1016/j.molcata.2007.12.022 CrossRefGoogle Scholar
  36. 36.
    Wollan EO, Koehler WC (1955) Phys Rev 100:545. doi: https://doi.org/10.1103/PhysRev.100.545 CrossRefGoogle Scholar
  37. 37.
    Kawano H, Kajimoto R, Kubota M, Yoshikawa H (1996) Phys Rev B 53:2202. doi: https://doi.org/10.1103/PhysRevB.53.2202 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gina Pecchi
    • 1
    Email author
  • Claudia Campos
    • 1
  • M. Graciela Jiliberto
    • 1
  • Yanko Moreno
    • 1
  • Octavio Peña
    • 2
  1. 1.Facultad de Ciencias QuímicasUniversidad de ConcepciónConcepcionChile
  2. 2.Sciences Chimiques de RennesUMR 6226, CNRSRennes CedexFrance

Personalised recommendations