Journal of Materials Science

, Volume 43, Issue 23–24, pp 7379–7384 | Cite as

Quasi-static and dynamic mechanical properties of commercial-purity tungsten processed by ECAE at low temperatures

  • Z. Pan
  • Y. Z. Guo
  • S. N. Mathaudhu
  • L. J. Kecskes
  • K. T. Hartwig
  • Q. WeiEmail author
Ultrafine-Grained Materials


In this work, we have processed commercial purity tungsten (W) via different routes of equal-channel angular extrusion (ECAE) at temperatures as low as 600 °C. We have systematically evaluated the quasi-static and dynamic compressive behaviors of the processed W. Quasi-static compression tests were performed using an MTS hydro-servo system at room temperature. It is observed that samples ECAE processed at 800 °C show higher yield and flow stresses than those processed at other temperatures; no obvious strain hardening is observed in the quasi-static stress–strain curves. Quasi-static strain rate jump tests show that the strain rate sensitivity of ECAE W is in the range of 0.02 to 0.03, smaller than that of coarse-grained W. Uni-axial dynamic compressive tests were performed using the Kolsky bar (or split-Hopkinson pressure bar, SHPB) system. Post-loading SEM observations revealed that under dynamic compression, the competition between cracking at pre-existing extrinsic surface defects, grain boundaries, and uniform plastic deformation of the individual grains control the overall plastic deformation of the ECAE W. The existence of flow softening under dynamic loading has been established for all of the ECAE W specimens.


Electrical Discharge Machine Strain Rate Sensitivity High Pressure Torsion Commercial Purity Flow Softening 



This work has been supported by the U.S. Army Research Laboratory under contract # W911QX-06-C-0124. The authors would like to thank Ms. Xueran Liu (University of North Carolina at Charlotte) for assistance with SEM operations.


  1. 1.
    Krasko GL (1993–1994) Int J Refract Met Hard Mater 12:251CrossRefGoogle Scholar
  2. 2.
    Dummer T, Lasalvia JC, Ravichandran G, Meyers MA (1998) Acta Mater 46:6267. doi: CrossRefGoogle Scholar
  3. 3.
    Lennon AM, Ramesh KT (2000) Mater Sci Eng A 276:9. doi: CrossRefGoogle Scholar
  4. 4.
    Wei Q, Jiao T, Ramesh KT, Ma E, Kecskes LJ, Magness L et al (2006) Acta Mater 54:77. doi: Google Scholar
  5. 5.
    Kecskes LJ, Cho KC, Dowding RJ, Schuster BE, Valiev RZ, Wei Q (2007) Mater Sci Eng A 467:33. doi: CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer M, Zhu YT (2006) JOM-US 58:33CrossRefGoogle Scholar
  8. 8.
    Wei Q, Ramesh KT, Kecskes LJ, Mathaudhu SN, Hartwig KT (2008) Mater Sci Forum 579:75CrossRefGoogle Scholar
  9. 9.
    Bechtold JH (1956) J Met Trans AIME 206:142Google Scholar
  10. 10.
    Farrell K, Schaffhauser AC, Stiegler JO (1967) J Less Common Met 13:141. doi: CrossRefGoogle Scholar
  11. 11.
    Wei Q, Zhang H, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ et al (2006) Acta Mater 54:4079. doi: CrossRefGoogle Scholar
  12. 12.
    Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykhanov VU et al (2005) Appl Phys Lett 86:101907. doi: CrossRefGoogle Scholar
  13. 13.
    Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scripta Mater 51:373. doi: CrossRefGoogle Scholar
  14. 14.
    Follansbee PS (1985) In ASM metals handbook. American Society of Metals. p 190Google Scholar
  15. 15.
    Hall EO (1951) P Phys Soc B 64:747CrossRefGoogle Scholar
  16. 16.
    Petch NJ (1953) J Iron Steel I 174:25Google Scholar
  17. 17.
  18. 18.
    Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71. doi: CrossRefGoogle Scholar
  19. 19.
    Wei Q, Kecskes LJ (2008) Mater Sci Eng A. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Z. Pan
    • 1
  • Y. Z. Guo
    • 1
  • S. N. Mathaudhu
    • 2
  • L. J. Kecskes
    • 2
  • K. T. Hartwig
    • 3
  • Q. Wei
    • 1
    Email author
  1. 1.Department of Mechanical Engineering and Engineering ScienceUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.U.S.-Army Research Laboratory, Weapons and Materials Research Directorate, AMSRD-ARL-WM-MB, Aberdeen Proving GroundAberdeenUSA
  3. 3.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations