Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6422–6428 | Cite as

Consolidation of SiC/BN composite through MA-SPS method

  • Yasuhiro Kodera
  • Naoki Toyofuku
  • Hiroyasu Yamasaki
  • Manshi OhyanagiEmail author
  • Zuhair A. Munir
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering

Abstract

Hexagonal-BN has been selected as a second phase for SiC/BN composite to improve SiC’s machinability and thermal shock resistance. In this research, nano-metric SiC/BN was prepared through mechanical alloying (MA) from Si + C + BN powder and then consolidated by SPS without any sintering aids. XRD results after MA revealed the absence of sharp peaks corresponding to SiC and BN. The density and the intensity of the SiC and BN peaks on XRD increased with temperature during SPS. The final density of the composite reached approximately 90–99% with 50/50 of SiC/BN to 100/0. During the consolidation process, crystallization, phase separation, and ordering were observed simultaneously. This phenomenon could accelerate the mass transfer for the consolidation and the preparation of bulk SiC/BN composite without any sintering aids. In a 50/50 SiC/BN ratio, the Vickers hardness of the nano-structured reference sample prepared by the conventional method with sintering aids could not be measured due to high porosity. However, the well-consolidated sample prepared in our research showed a hardness of approximately 3 GPa.

Keywords

Mechanical Alloy Spark Plasma Sinter Vickers Hardness Composite Powder Thermal Shock Resistance 

Notes

Acknowledgement

The authors acknowledge the partial support of this work by grant based on High-tech Research Center Program for private Universities from the Japan Ministry of Education, Culture, Sport, Science and Technology (MO).

References

  1. 1.
    Yamada K, Mohri M (1991) In: Somiya S, Inomata Y (ed) silicon carbide ceramics-1, New YorkGoogle Scholar
  2. 2.
    Tavassoli A (2002) J Nucl Mater 302:73. doi: https://doi.org/10.1016/S0022-3115(02)00794-8 CrossRefGoogle Scholar
  3. 3.
    Yano T, Akiyoshi T, Ichikawa M, Tachi K, Isekil Y (2002) J Nucl Mater 289:73Google Scholar
  4. 4.
    Heinisch HL, Greenwood LR, Weber WJ, Williford RE (2002) J Nucl Mater 307:895. doi: https://doi.org/10.1016/S0022-3115(02)00962-5 CrossRefGoogle Scholar
  5. 5.
    Laundry D, Thevenot F (1981) Sci ceram 11:251Google Scholar
  6. 6.
    Lipp A, Schwetz KA, Hunold K (1989) J Eur Ceram Soc 5:3. doi: https://doi.org/10.1016/0955-2219(89)90003-4 CrossRefGoogle Scholar
  7. 7.
    Vaßen R, Kaiser A, Forster J, Buchkremer HP, Stover D (1996) J Mater Sci 31:3623. doi: https://doi.org/10.1007/BF00352770 CrossRefGoogle Scholar
  8. 8.
    Shinoda Y, Nagano T, Wakai F (1999) J Am Ceram Soc 82:771CrossRefGoogle Scholar
  9. 9.
    Herrmann M, Can A, Mclachlan DS (2006) J Eur Ceram Soc 26:1707. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.253 CrossRefGoogle Scholar
  10. 10.
    Taylor KM (1955) Ind Eng Chem 47:2506. doi: https://doi.org/10.1021/ie50552a039 CrossRefGoogle Scholar
  11. 11.
    Goeuriot-Lannay D, Brayet G, Thevenot F (1986) J Mater Sci Lett 5:940. doi: https://doi.org/10.1007/BF01729282 CrossRefGoogle Scholar
  12. 12.
    Zhang G, Ohji T (2000) J Mater Res Soc 15:1876CrossRefGoogle Scholar
  13. 13.
    Zhang G, Yang J, Deng Z, Ohji T (2001) J Ceram Soc Jpn 109:45CrossRefGoogle Scholar
  14. 14.
    Zhang G, Beppu Y, Ohji T (2001) Acta Mater 49:77. doi: https://doi.org/10.1016/S1359-6454(00)00297-4 CrossRefGoogle Scholar
  15. 15.
    Wang X, Qiao G, Jin Z (2004) J Am Ceram Soc 87:565CrossRefGoogle Scholar
  16. 16.
    Kusunose T (2006) J Ceram Soc Jpn 114:167. doi: https://doi.org/10.2109/jcersj.114.167 CrossRefGoogle Scholar
  17. 17.
    Zhang G, Ohji T (2001) J Am Ceram Soc 84:1475. doi: https://doi.org/10.1111/j.1151-2916.2001.tb00746.x CrossRefGoogle Scholar
  18. 18.
    Yamamoto T, Kitaura H, Kodera Y, Ishii T, Ohyanagi M, Munir ZA (2004) J Am Ceram Soc 87:1463CrossRefGoogle Scholar
  19. 19.
    Ohyanagi M, Yamamoto T, Kitaura H, Kodera Y, Ishii T, Munir ZA (2004) Scr Mater 50:111. doi: https://doi.org/10.1016/j.scriptamat.2003.09.027 CrossRefGoogle Scholar
  20. 20.
    Yamamoto T, Ohyanagi M, Munir ZA (2004) J Mater Eng Perform 112:940Google Scholar
  21. 21.
    Kodera Y, Yamamoto T, Toyofuku N, Ohyanagi M, Munir ZA (2006) J Mater Sci 41:727. doi: https://doi.org/10.1007/s10853-006-6501-3 CrossRefGoogle Scholar
  22. 22.
    Yamamoto T, Isibasi N, Toyofuku N, Kodera Y, Ohyanagi M, Munir ZA (2006) Mater Sci Technol 2006:531Google Scholar
  23. 23.
    Baraton MI, El-shall MS (1995) NanoStruct Mater 6:301. doi: https://doi.org/10.1016/0965-9773(95)00057-7 CrossRefGoogle Scholar
  24. 24.
    Geick R, Perry CH (1996) Phys Rev B 146:543CrossRefGoogle Scholar
  25. 25.
    Rozenberg AS, Sinenko YUA, Chukano NV (1993) J Mater Sci 28:5675. doi: https://doi.org/10.1007/BF00367846 CrossRefGoogle Scholar
  26. 26.
    Shirai K, Yamamoto T, Ohyanagi M, Munir ZA (2006) J Ceram Soc Jpn 114:220. doi: https://doi.org/10.2109/jcersj.114.220 CrossRefGoogle Scholar
  27. 27.
    Stearns LC, Harmer MP (1996) J Am Ceram Soc 79:3020. doi: https://doi.org/10.1111/j.1151-2916.1996.tb08072.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yasuhiro Kodera
    • 1
  • Naoki Toyofuku
    • 1
  • Hiroyasu Yamasaki
    • 1
  • Manshi Ohyanagi
    • 1
    Email author
  • Zuhair A. Munir
    • 2
  1. 1.Department of Materials Chemistry, Innovation Materials and Research CenterRyukoku UniversityOtsu ShigaJapan
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations