Journal of Materials Science

, Volume 43, Issue 15, pp 5331–5335 | Cite as

Synthesis and characterization of high surface area silicon carbide by dynamic vacuum carbothermal reduction

  • Ying ZhengEmail author
  • Yong Zheng
  • Rong Wang
  • Kemei Wei


Silicon carbide (SiC) precursor was obtained by sol–gel used tetraethoxysilane as silicon source and saccharose as carbon source, and then the precursor was used to prepare SiC by carbothermal reduction under dynamic vacuum condition. The samples were characterized by X-ray diffraction, scanning electron microscope, and low-temperature nitrogen adsorption–desorption measurement. The results showed that the carbothermal temperature for synthesizing SiC needed to be at 1,100 °C under dynamic vacuum. At this temperature, the obtained sample is composed of agglomerated regular grains with size ranging from 20 to 40 nm and has a high surface area of 167 m2/g and the main pore size center at 5.3 nm.


Carbothermal Reduction Vacuum Furnace Oxalic Acid Solution Dynamic Vacuum Silicon Source 



The project was supported by the National Natural Science Foundation of China (No.20576021), the Natural Science Foundation of Fujian Province of China (No.E0710004), Science and Technology Priority Project of Fujian Province (2005HZ01-2).


  1. 1.
    Okada K, Kata H, Nakajima K (1994) J Am Ceram Soc 77:1691. doi: CrossRefGoogle Scholar
  2. 2.
    Bao X, Nangerjo MR, Edirisinghe MJ (2000) J Mater Sci 35:4365. doi: CrossRefGoogle Scholar
  3. 3.
    Gadzira M, Gnesin G, Mykhaylyk O, Andreyev O (1998) Diamond Relat Mater 7:1466. doi: CrossRefGoogle Scholar
  4. 4.
    Pascal DG, Huu CP, Christophe B, Estournes C, Ledoux MJ (1997) Appl Catal A 156:131. doi: CrossRefGoogle Scholar
  5. 5.
    Frederic M, Behrang M, Claude C (1997) J Catal 169:33. doi: CrossRefGoogle Scholar
  6. 6.
    Marc J, Ledoux M, Huu PC (2000) Catal Today 61:157. doi: CrossRefGoogle Scholar
  7. 7.
    Nicolas K, Valerie K, Elodie B, Francois G, Ledoux MJ (2004) J Mater Chem 14:1887. doi: CrossRefGoogle Scholar
  8. 8.
    Moene R, Tijsen EPAM, Makkeel M (1999) Appl Catal A 184:127. doi: CrossRefGoogle Scholar
  9. 9.
    Moene R, Makkee M, Moulijn JA (1998) Appl Catal A 167:321. doi: CrossRefGoogle Scholar
  10. 10.
    Ledoux MJ, Sylvain H, Huu CP, Guille J, Desaneaux MP (1988) J Catal 114:176. doi: CrossRefGoogle Scholar
  11. 11.
    Nicolas K, Olivier R, Keller V (2005) Diamond Relat Mater 14:1353. doi: CrossRefGoogle Scholar
  12. 12.
    Jin GQ, Guo XY (2003) Micropor Mesopor Mater 60:207. doi: CrossRefGoogle Scholar
  13. 13.
    Li JW, Tian JM, Dong LM (2000) J Eur Ceram Soc 77:1853CrossRefGoogle Scholar
  14. 14.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309. doi: CrossRefGoogle Scholar
  15. 15.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373. doi: CrossRefGoogle Scholar
  16. 16.
    Seo WS, Koumoto K (1998) J Am Ceram Soc 81:1255CrossRefGoogle Scholar
  17. 17.
    Puneet G, William W, Fan LS (2004) Ind Eng Chem Res 43:4732. doi: CrossRefGoogle Scholar
  18. 18.
    Simkovic I, Surina I, Vrican M (2003) J Anal Appl Pyrol 70:493. doi: CrossRefGoogle Scholar
  19. 19.
    Zheng Y, Zheng Y, Lin LX, Ni J, Kei KM (2006) Scripta Mater 55:883. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceFujian Normal UniversityFuzhouChina
  2. 2.National Engineering Research Center of Chemical Fertilizer CatalystFuzhou UniversityFuzhouChina

Personalised recommendations