Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5265–5273 | Cite as

Effects of the enhanced heat treatment on the mechanical properties and stress corrosion behavior of an Al–Zn–Mg alloy

  • Min SongEmail author
  • Kanghua Chen
Article

Abstract

In this article, the effects of the enhanced solution treatment (EST) and high-temperature pre-precipitation (HTPP) on the microstructures, mechanical properties, and stress corrosion cracking resistance of an Al–Zn–Mg alloy have been investigated. The results indicated that EST and HTPP can substantially affect the microstructures of the alloy. The width of the continuously distributed grain boundary precipitates decreases after the EST, while the continuous grain boundary precipitation changes to a discontinuous precipitation structure after both the EST and HTPP. The yield strength, tensile strength, elongation, and fracture toughness of the specimens after the EST are much higher than those of the specimens only after traditional solution treatment, since the EST substantially decreases the size and volume fraction of the constituents. The stress corrosion cracking resistance of the specimens after both the EST and HTPP has been greatly improved due to the discontinuous distribution, and high Cu and low Mg concentrations of the grain boundary precipitates.

Keywords

Fracture Toughness Stress Corrosion Stress Corrosion Crack Hydrogen Embrittlement Tensile Ductility 

Notes

Acknowledgements

This work was supported by the Creative Research Group of National Natural Science Foundation of China (grant no. 50721003) and Hunan Provincial Natural Science Foundation of China (grant no. 07JJ3117).

References

  1. 1.
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS (2000) Mater Sci Eng A 280:102. doi: https://doi.org/10.1016/S0921-5093(99)00674-7 CrossRefGoogle Scholar
  2. 2.
    Lukasak DA, Hart RM (1991) Aerosp Eng 11:21Google Scholar
  3. 3.
    Dix EH (1940) Trans AIME 137:11Google Scholar
  4. 4.
    Song RG, Dietzel W, Zhang BJ, Liu WJ, Tseng MK, Atrens A (2004) Acta Mater 52:4727. doi: https://doi.org/10.1016/j.actamat.2004.06.023 CrossRefGoogle Scholar
  5. 5.
    Srivatsan TS, Anand S, Sriram S, Vasudevan VK (2000) Mater Sci Eng A 281:292. doi: https://doi.org/10.1016/S0921-5093(99)00716-9 CrossRefGoogle Scholar
  6. 6.
    Cina BM (1974) US Patent 3,856,584Google Scholar
  7. 7.
    Huang LP, Chen KH, Li S, Song M (2007) Scr Mater 56:305. doi: https://doi.org/10.1016/j.scriptamat.2006.09.028 CrossRefGoogle Scholar
  8. 8.
    Ou BL, Yang JG, Wei MY (2007) Metall Mater Trans A 381:760Google Scholar
  9. 9.
    Srivatsan TS, Vasudevan VK (1999) J Met 51:42. doi: https://doi.org/10.1007/s11837-999-0011-0 Google Scholar
  10. 10.
    Srivatsan TS, Sriram S, Veeraraghavan D, Vasudevan VK (1997) J Mater Sci 32:2883. doi: https://doi.org/10.1023/A:1018676501368 CrossRefGoogle Scholar
  11. 11.
    Hahn GT, Rosenfield AR (1975) Metall Trans A 6:653. doi: https://doi.org/10.1007/BF02672285 CrossRefGoogle Scholar
  12. 12.
    Thompson DS (1975) Metall Trans A 6:671. doi: https://doi.org/10.1007/BF02672287 CrossRefGoogle Scholar
  13. 13.
    Ludtka GM, Laughlin DE (1982) Metall Trans A 13:411CrossRefGoogle Scholar
  14. 14.
    Adler PN, Deiasi R, Geschwind G (1972) Metall Trans 3:3191. doi: https://doi.org/10.1007/BF02661333 CrossRefGoogle Scholar
  15. 15.
    Lyman CE, Vander Sande JB (1976) Metall Trans A 7:1211. doi: https://doi.org/10.1007/BF02656605 CrossRefGoogle Scholar
  16. 16.
    Marcantonio JA, Mondolfo LF (1970) J Inst Met 98:23Google Scholar
  17. 17.
    Mondolfo LF (1971) Met Mater 5:95Google Scholar
  18. 18.
    Kent KG (1969) J Inst Met 93:127Google Scholar
  19. 19.
    Wu YL, Froes FH, Alvarez A, Li CG, Liu J (1997) Mater Des 18:211. doi: https://doi.org/10.1016/S0261-3069(97)00084-8 CrossRefGoogle Scholar
  20. 20.
    Poulose PK, Morral JE, McEvily AJ (1974) Metall Trans 5:1393. doi: https://doi.org/10.1007/BF02646625 CrossRefGoogle Scholar
  21. 21.
    Park JK, Ardell AJ (1984) Metall Trans A 15:1531. doi: https://doi.org/10.1007/BF02657792 CrossRefGoogle Scholar
  22. 22.
    Rajan K, Wallace W, Beddoes JC (1982) J Mater Sci 17:2817. doi: https://doi.org/10.1007/BF00644656 CrossRefGoogle Scholar
  23. 23.
    Wang H, Cui H, Hao B, Cheng J, Huang J, Zhang J (2005) Acta Metall Sin 41:1267Google Scholar
  24. 24.
    Dix EH, Brown RH, Binger WW (1961) In: Lyman T (ed) Metals handbook, 8th edn., vol 1. ASM, Metal Park, OH, p 916Google Scholar
  25. 25.
    Busby J, Cleave JF, Cudd RL (1971) J Inst Met 99:41Google Scholar
  26. 26.
    Sarkar B, Marek M, Starke EA Jr (1981) Metall Trans A 12:1939. doi: https://doi.org/10.1007/BF02643806 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations