Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5989–5997 | Cite as

Effects of the high temperature plasma immersion ion implantation (PIII) of nitrogen in AISI H13 steel

  • L. L. G. da SilvaEmail author
  • M. Ueda
  • C. B. Mello
  • E. N. Codaro
  • C. M. Lepienski
Article

Abstract

In this paper we report the effect of high temperature PIII of nitrogen on the chemical and physical properties of AISI H13 steel. The implantation of H13 steels was carried out at different temperatures ranging between 300 °C and 720 °C. After the treatment, the surface morphology was drastically changed as observed by SEM analysis. Nitrogen penetration depth reaching up to 12 μm was achieved at 620 °C and 720 °C. The maximum hardness of about 592 HV was obtained for the sample treated at 470 °C that is 17% higher than for untreated specimen. There was a decrease of the hardness values for temperatures above 470 °C. The same hardness behavior with the temperature was confirmed by nanoindentation testing. Although an enriched nitrogen layer was obtained, no evidence of nitride compounds was detected by XRD analyses. On the other hand, improvements of the H13 steel tribological properties and corrosion resistance were obtained. The wear tests were conducted by pin-on-disk tribometer (rotating mode). The wear volume decreased by factor of 4.5 compared to the standard tempered and annealed H13 steel and 2.6 times reduction of the coefficient of friction was achieved. The electrochemical measurements were performed in 3.5% NaCl solution, pH = 6. Open circuit potential curves showed that the potentials are nobler for the PIII treated samples than for untreated specimen. In addition, the corrosion current density of the samples treated at 620 °C and 720 °C diminished to 3 × 10−8 A/cm2.

Keywords

Plasma Nitriding Untreated Specimen Iron Nitride Unimplanted Sample Glow Discharge Optical Spectroscopy 

Notes

Acknowledgement

This work was supported by CNPq (process: 382838/2004-1), FAPESP and MCT.

References

  1. 1.
    Conrad JR, Radke JI, Dodd RA, Worzala FJ, Tran NC (1987) J Appl Phys 62:4591. doi: https://doi.org/10.1063/1.339055 CrossRefGoogle Scholar
  2. 2.
    Tóth A, Mohai M, Ujvári T, Bell T, Dong H, Bertóti I (2004) Surf Coat Tech 186:248. doi: https://doi.org/10.1016/j.surfcoat.2004.04.031 CrossRefGoogle Scholar
  3. 3.
    Silva LLG, Ueda M, Nakazato RZ (2007) Surf Coat Tech 201:8291. doi: https://doi.org/10.1016/j.surfcoat.2006.03.063 CrossRefGoogle Scholar
  4. 4.
    Kostov KG, Ueda M, Lepiensky M, Soares PC Jr, Gomes GF, Silva MM et al (2004) Surf Coat Tech 186:204. doi: https://doi.org/10.1016/j.surfcoat.2004.04.027 CrossRefGoogle Scholar
  5. 5.
    Ueda M, Mello CB, Beloto AF, Rossi JO, Reuther H (2007) Nucl Instrum Methods Phys Res B 257:710CrossRefGoogle Scholar
  6. 6.
    Fouquet V, Pichon L, Straboni A, Drouet M (2004) Surf Coat Tech 186:34. doi: https://doi.org/10.1016/j.surfcoat.2004.04.006 CrossRefGoogle Scholar
  7. 7.
    Silva LLG, Ueda M, Silva MM, Codaro EN (2007) IEEE Trans Plasma Sci 34:1141. doi: https://doi.org/10.1109/TPS.2006.878391 CrossRefGoogle Scholar
  8. 8.
    Voltz K, Ensinger W (2002) Surf Coat Tech 156:237. doi: https://doi.org/10.1016/S0257-8972(02)00098-1 CrossRefGoogle Scholar
  9. 9.
    Mändel S, Manova D, Gerlach JW, Assmann W, Neumann H, Rauschenbach B (2004) Surf Coat Tech 180:362. doi: https://doi.org/10.1016/j.surfcoat.2003.10.134 CrossRefGoogle Scholar
  10. 10.
    Zagonel LF, Figueroa CA, Alvarez F (2005) Surf Coat Tech 200:2566. doi: https://doi.org/10.1016/j.surfcoat.2004.10.126 CrossRefGoogle Scholar
  11. 11.
    Zagonel LF, Figueroa CA, Droppa R Jr, Alvarez F (2006) Surf Coat Tech 201:452. doi: https://doi.org/10.1016/j.surfcoat.2005.11.137 CrossRefGoogle Scholar
  12. 12.
    Hutchings R, Collins GA, Tendys J (1992) Surf Coat Tech 51:489. doi: https://doi.org/10.1016/0257-8972(92)90287-K CrossRefGoogle Scholar
  13. 13.
    Collins GA, Hutchings R, Tendys J (1991) Mater Sci Eng A 139:171. doi: https://doi.org/10.1016/0921-5093(91)90613-R CrossRefGoogle Scholar
  14. 14.
    Ueda M, Leandro C, Reuther H, Lepienski CM (2005) Nucl Instrum Methods B 240:204. doi: https://doi.org/10.1016/j.nimb.2005.06.116 CrossRefGoogle Scholar
  15. 15.
    Ueda M, Berni LA, Castro RM (2005) Surf Coat Tech 200:517. doi: https://doi.org/10.1016/j.surfcoat.2005.02.146 CrossRefGoogle Scholar
  16. 16.
    Bullens DK (1948) Steel and its heat treatment. Wiley, INC, New York, p 53Google Scholar
  17. 17.
    Samandi M, Pauza A, Hatziandoniou G, Yasbandha H, Hutching R, Collins GA et al (1992) Surf Coat Tech 54/55:447. doi: https://doi.org/10.1016/S0257-8972(07)80064-8 CrossRefGoogle Scholar
  18. 18.
    Anders A (2000) Handbook of plasma immersion ion implantation and deposition. Wiley, INC, New York, p 553Google Scholar
  19. 19.
    Kariofillis GK, Kiourtsidis GE, Tsipas DN (2006) Surf Coat Tech 201:19. doi: https://doi.org/10.1016/j.surfcoat.2005.10.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. L. G. da Silva
    • 1
    Email author
  • M. Ueda
    • 1
  • C. B. Mello
    • 1
  • E. N. Codaro
    • 2
  • C. M. Lepienski
    • 3
  1. 1.Associated Plasma LaboratoryNational Space Research InstituteS. J. CamposBrazil
  2. 2.Department of Physics and ChemistrySão Paulo State University-UNESPGuaratinguetáBrazil
  3. 3.Department of PhysicsFederal University of ParanáCuritibaBrazil

Personalised recommendations