Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5092–5101 | Cite as

Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review

  • B. Z. JangEmail author
  • A. Zhamu
Review

Abstract

The nanoscale graphene platelet (NGP) or graphene nanosheet is an emerging class of nanomaterials. An NGP is a nanoscale platelet composed of one or more layers of a graphene plane, with a platelet thickness from less than 0.34 to 100 nm. NGPs are predicted to have a range of unusual physical, chemical, and mechanical properties. Although practical electronic device applications for graphene are not envisioned to occur within the next 5–10 years, its application as a nanofiller in a composite material is imminent. The availability of processable graphene sheets in large quantities is essential to the success in exploiting composite and other applications. This review first describes the earlier processes for producing mostly multi-layer NGPs and their composites, which is followed by a discussion on the recent developments in the preparation of single-layer NGPs and their nanocomposites. Fundamental principles behind processing of nanographene materials are also briefly discussed.

Keywords

Graphene Sheet Graphite Oxide Graphite Particle Highly Orient Pyrolytic Graphite Exfoliate Graphite 

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Science 306:666. doi: https://doi.org/10.1126/science.1102896 CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Jiang D, Schedin F et al (2005) Proc Natl Acad Sci USA 102:10451. doi: https://doi.org/10.1073/pnas.0502848102 CrossRefGoogle Scholar
  3. 3.
    Jang BZ, Huang WC (2006) US Patent 7,071,258, (submitted on 21 Oct 2002 and issued on 4 Jul 2006)Google Scholar
  4. 4.
    Jang BZ (2006) US Patent 11/442,903 (20 Jun 2006); a divisional of 10/274,473 (21 Oct 2002)Google Scholar
  5. 5.
    Schwalm W, Schwalm M, Jang BZ (2004) American Physical Society Montreal, CanadaGoogle Scholar
  6. 6.
    McAllister MJ, Li JL, Adamson DH et al (2007) Chem Mater 19:4396. doi: https://doi.org/10.1021/cm0630800 CrossRefGoogle Scholar
  7. 7.
    Li JL, Kudin KN, McAllister MJ et al (2006) Phys Rev Lett 96:176101. doi: https://doi.org/10.1103/PhysRevLett.96.176101 CrossRefGoogle Scholar
  8. 8.
    Schniepp HC, Li JL, McAllister MJ et al (2006) J Phys Chem B 110:8535. doi: https://doi.org/10.1021/jp060936f CrossRefGoogle Scholar
  9. 9.
    Li X, Wang X, Zhang L, Lee S et al (2008) Science 319:1229–1. doi: https://doi.org/10.1126/science.1150878 CrossRefGoogle Scholar
  10. 10.
    Novoselov KS, Geim AK, Morozov SV et al (2005) Nature 438:197. doi: https://doi.org/10.1038/nature04233 CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Ando T (2002) Phys Rev Lett B65:245420Google Scholar
  12. 12.
    Zhang Y, Tan YW, Stormer HL et al (2005) Nature 438:201. doi: https://doi.org/10.1038/nature04235 CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Small JP, Amori ME et al (2005) Phys Rev Lett 94:176803. doi: https://doi.org/10.1103/PhysRevLett.94.176803 CrossRefGoogle Scholar
  14. 14.
    Berger C, Song Z, Li T et al (2004) J Phys Chem B 108:19912. doi: https://doi.org/10.1021/jp040650f CrossRefGoogle Scholar
  15. 15.
    Enoki T, Kobayashi Y (2005) J Mater Chem 15:3999. doi: https://doi.org/10.1039/b500274p CrossRefGoogle Scholar
  16. 16.
    Heersche HB, Jarillo-Herrero P, Oostinga JB et al (2007) Nat Lett 446:56. doi: https://doi.org/10.1038/nature05555 CrossRefGoogle Scholar
  17. 17.
    Soon YW, Cohen ML, Louie SG (2006) Nat Lett 444:347. doi: https://doi.org/10.1038/nature05180 CrossRefGoogle Scholar
  18. 18.
    Meyer JC, Geim AK, Katsnelson MI et al (2007) Nat Lett 446:60. doi: https://doi.org/10.1038/nature05545 CrossRefGoogle Scholar
  19. 19.
    Wong SC, Sutherland EM, Jang BZ (2004) Proceedings of the 62nd SPE ANTEC, Chicago, IL, 2004Google Scholar
  20. 20.
    Wong SC, Sutherland E, Jang BZ (2004) Proceedings of NSF design and manuf. Grantees and research Conf. Dallas, TX, 2004Google Scholar
  21. 21.
    Fukushima H, Lee SH, Drzal LT (2004) Proceedings of the 62nd SPE ANTEC, Chicago, IL, 2004Google Scholar
  22. 22.
    Yasmin A, Daniel IM (2004) Polymer 45:8211. doi: https://doi.org/10.1016/j.polymer.2004.09.054 CrossRefGoogle Scholar
  23. 23.
    Stankovich S (2006) J Mater Chem 16:155. doi: https://doi.org/10.1039/b512799 h CrossRefGoogle Scholar
  24. 24.
    Stankovich S, Piner RD, Nguyen ST et al (2006) Carbon 44:3342. doi: https://doi.org/10.1016/j.carbon.2006.06.004 CrossRefGoogle Scholar
  25. 25.
    Stankovich S, Dikin DA, Dommett G et al (2006) Nat Lett 442:282. doi: https://doi.org/10.1038/nature04969 CrossRefGoogle Scholar
  26. 26.
    Bunnell LR Sr (1991) US Patent 987(4):175Google Scholar
  27. 27.
    Bunnell LR Sr (1991) US Patent 019(5):446Google Scholar
  28. 28.
    Bunnell LR Sr (1993) US Patent 186(5):919Google Scholar
  29. 29.
    Zaleski PL, Derwin DJ, Girkant RJ et al (2001) US Patent 287(6):694Google Scholar
  30. 30.
    Mazurkiewicz M (2002) US Patent Application No. 09/951,532; Pub. No. US 2002/0054995 (Published on 9 May 2002)Google Scholar
  31. 31.
    Shioyama H (2001) J Mater Sci Lett 20:499. doi: https://doi.org/10.1023/A:1010907928709 CrossRefGoogle Scholar
  32. 32.
    Horiuchi S, Gotou T, Fujiwara M et al (2004) Appl Phys Lett 84:2403 (paper received on 8 September 2003)CrossRefGoogle Scholar
  33. 33.
    Horiuchi S, Gotou T, Fujiwara M et al (2003) Jpn J Appl Phys 42(Part 2):L1073. doi: https://doi.org/10.1143/JJAP.42.L1073 CrossRefGoogle Scholar
  34. 34.
    Hirata M, Horiuchi S (2003) US Patent 596(6):396Google Scholar
  35. 35.
    Hirata M, Gotou T, Ohba M (2005) Carbon 43:503. doi: https://doi.org/10.1016/j.carbon.2004.10.009 CrossRefGoogle Scholar
  36. 36.
    Hirata M, Gotou T, Horiuchi S et al (2004) Carbon 42:2929Google Scholar
  37. 37.
    Hummers WS (1957) US Patent 798(2):878Google Scholar
  38. 38.
    Hummers WS (1958) J Am Chem Soc 80:1339. doi: https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Dekany I, Kruger-Grasser R, Weiaa A (1998) Colloid Polym Sci 276:570. doi: https://doi.org/10.1007/s003960050283 CrossRefGoogle Scholar
  41. 41.
    Roy HV, Kallinger C, Marsen B et al (1998) J Appl Phys 83:4695. doi: https://doi.org/10.1063/1.367257 CrossRefGoogle Scholar
  42. 42.
    Lu XK, Yu MF, Huang H et al (1999) Nanotechnology 10:269. doi: https://doi.org/10.1088/0957-4484/10/3/308 CrossRefGoogle Scholar
  43. 43.
    Land TA, Michely T, Behm RJ et al (1992) Surf Sci 264:261. doi: https://doi.org/10.1016/0039-6028(92)90183-7 CrossRefGoogle Scholar
  44. 44.
    Nagashima A, Nuka K, Itoh H et al (1993) Surf Sci 291:93. doi: https://doi.org/10.1016/0039-6028(93)91480-D CrossRefGoogle Scholar
  45. 45.
    van Bommel AJ, Crombeen JE, van Tooren A (1975) Surf Sci 48:463. doi: https://doi.org/10.1016/0039-6028(75)90419-7 CrossRefGoogle Scholar
  46. 46.
    Forbeaux I, Themlin J-M, Debever JM (1998) Phys Rev B 58:16396. doi: https://doi.org/10.1103/PhysRevB.58.16396 CrossRefGoogle Scholar
  47. 47.
    Oshima C, Nagashima A (1997) J Condens Matter 9:1. doi: https://doi.org/10.1088/0953-8984/9/1/004 CrossRefGoogle Scholar
  48. 48.
    Wu Y, Chong C (2003) US Patent Appl. No. 10/124,188 (US Pub. No. 2003/0129305, 10 July 2003)Google Scholar
  49. 49.
  50. 50.
    Matsuo Y, Tahara K, Sugie Y (1998) Chem Mater 10:2266. doi: https://doi.org/10.1021/cm980203a CrossRefGoogle Scholar
  51. 51.
    Xu JY, Hu Y, Song L et al (2001) Polym Degrad Stab 73:29. doi: https://doi.org/10.1016/S0141-3910(01)00046-5 CrossRefGoogle Scholar
  52. 52.
  53. 53.
    Xu JY, Hu Y, Song L et al (2001) Mater Res Bull 36:1833. doi: https://doi.org/10.1016/S0025-5408(01)00662-6 CrossRefGoogle Scholar
  54. 54.
  55. 55.
    Liu PG, Gong K, Xiao P et al (2002) J Mater Chem 10:933. doi: https://doi.org/10.1039/a908179 h CrossRefGoogle Scholar
  56. 56.
    Matsuo Y, Sugie Y (1998) Carbon 36:301. doi: https://doi.org/10.1016/S0008-6223(98)80120-6 CrossRefGoogle Scholar
  57. 57.
    Xiao P, Xiao M, Liu PG et al (2000) Carbon 38:626. doi: https://doi.org/10.1016/S0008-6223(00)00005-1 CrossRefGoogle Scholar
  58. 58.
    Hamwi A, Marchand V (1996) J Phys Chem Solids 57:867. doi: https://doi.org/10.1016/0022-3697(96)00364-2 CrossRefGoogle Scholar
  59. 59.
    Lerf A, He HY, Forester M (1998) J Phys Chem B 102:4477. doi: https://doi.org/10.1021/jp9731821 CrossRefGoogle Scholar
  60. 60.
    Matsuo Y, Tahara K, Sugie Y (1996) Carbon 34:672. doi: https://doi.org/10.1016/0008-6223(96)85961-6 CrossRefGoogle Scholar
  61. 61.
    Kotov NA, Dekany I, Fendler JH (1996) Adv Mater 8:637. doi: https://doi.org/10.1002/adma.19960080806 CrossRefGoogle Scholar
  62. 62.
    Matsuo Y, Tahara K, Sugie Y (1997) Carbon 35(1):113. doi: https://doi.org/10.1016/S0008-6223(96)00123-6 CrossRefGoogle Scholar
  63. 63.
    Cassagneau T, Fendler JH (1998) Adv Mater 10(11):877. doi :10.1002/(SICI)1521-4095(199808)10:11<877::AID-ADMA877>3.0.CO;2-1CrossRefGoogle Scholar
  64. 64.
    Cassagneau T, Guerin F, Fendler JH (2000) Langmuir 16:7318. doi: https://doi.org/10.1021/la000442o CrossRefGoogle Scholar
  65. 65.
    Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Chem Mater 11:771. doi: https://doi.org/10.1021/cm981085u CrossRefGoogle Scholar
  66. 66.
    Szabo T, Szeri A, Dekany I (2005) Carbon 43:87. doi: https://doi.org/10.1016/j.carbon.2004.08.025 CrossRefGoogle Scholar
  67. 67.
    Xiao P, Xiao M, Gong KC (2001) Polymer 42:4813. doi: https://doi.org/10.1016/S0032-3861(00)00819-3 CrossRefGoogle Scholar
  68. 68.
    Xiao M, Sun LY, Liu JJ et al (2001) Polymer 43(8):2245. doi: https://doi.org/10.1016/S0032-3861(02)00022-8 CrossRefGoogle Scholar
  69. 69.
    Chen GH, Wu DJ, Weng W et al (2001) J Appl Polym Sci 82:2506. doi: https://doi.org/10.1002/app.2101 CrossRefGoogle Scholar
  70. 70.
    Chen GH (2003) Polymer (Guildf) 44:1781. doi: https://doi.org/10.1016/S0032-3861(03)00050-8 CrossRefGoogle Scholar
  71. 71.
    Chen GH, Wu D, Weng W (2003) Carbon 41:619. doi: https://doi.org/10.1016/S0008-6223(02)00409-8 CrossRefGoogle Scholar
  72. 72.
    Chen GH, Weng W, Wu D et al (2003) Eur Polym J 39:2329. doi: https://doi.org/10.1016/j.eurpolymj.2003.08.005 CrossRefGoogle Scholar
  73. 73.
  74. 74.
    Zheng W, Wong SC, Sue HJ (2002) Polymer 73:6767. doi: https://doi.org/10.1016/S0032-3861(02)00599-2 CrossRefGoogle Scholar
  75. 75.
    Zheng W, Wong SC (2003) Compos Sci Technol 63:225. doi: https://doi.org/10.1016/S0266-3538(02)00201-4 CrossRefGoogle Scholar
  76. 76.
    Pan YX, Yu Z, Ou Y et al (2000) J Polym Sci Part B. Polym Phys 38:1626. doi :10.1002/(SICI)1099-0488(20000615)38:12,<1626::AID-POLB80>3.0.CO;2-RGoogle Scholar
  77. 77.
    Shen JW, Chen XM, Huang WY (2003) J Appl Polym Sci 88:1864. doi: https://doi.org/10.1002/app.11892 CrossRefGoogle Scholar
  78. 78.
    Du XS, Xiao M, Meng YZ et al (2004) Synth Met 143:129. doi: https://doi.org/10.1016/j.synthmet.2003.10.023 CrossRefGoogle Scholar
  79. 79.
    Udy JD (2006) US Patent Application No. 11/243,285 (Oct. 4, 2005); Pub No. 2006/0269740 (30 Nov 2006)Google Scholar
  80. 80.
    Jang BZ, Wong SC, Bai Y (2005) US Patent Appl. No. 10/858,814 (3 June 2004); Pub. No. US 2005/0271574 (Pub. 8 Dec 2005)Google Scholar
  81. 81.
    Petrik VI (2006) US Patent Appl. No. 11/007,614 (7 Dec 2004); Publ No. US 2006/0121279 (Pub. 8 June 2006)Google Scholar
  82. 82.
    Drzal LT, Fukushima H (2006) US Patent Appl. No. 11/363,336 (27 Feb 2006); 11/361,255 (Feb. 24, 2006); 10/659,577 (10 Sept 2003)Google Scholar
  83. 83.
    Mack JJ, Viculis LM, Kaner RB et al (2005) US Patent 872(6):330Google Scholar
  84. 84.
    Viculis LM, Mack JJ, Kaner RB (2003) Science 299:1361. doi: https://doi.org/10.1126/science.1078842 CrossRefGoogle Scholar
  85. 85.
    Mack JJ, Viculis LM, Ali A et al (2005) Adv Mater 17:77. doi: https://doi.org/10.1002/adma.200400133 CrossRefGoogle Scholar
  86. 86.
    Li D, Muller MC, Gilje S et al (2008) Nat Nanotechnol 3:101. doi: https://doi.org/10.1038/nnano.2007.451 CrossRefGoogle Scholar
  87. 87.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183. doi: https://doi.org/10.1038/nmat1849 CrossRefGoogle Scholar
  88. 88.
    Li J, Kim JK, Sham ML (2005) Scr Mater 53:235. doi: https://doi.org/10.1016/j.scriptamat.2005.03.034 CrossRefGoogle Scholar
  89. 89.
    Du XS, Xiao M, Meng YZ et al (2005) Carbon 43:195. doi: https://doi.org/10.1016/j.carbon.2004.06.036 CrossRefGoogle Scholar
  90. 90.
    Martin WH, Brocklehurst JE (1964) Carbon 1:133. doi: https://doi.org/10.1016/0008-6223(64)90067-3 CrossRefGoogle Scholar
  91. 91.
    Chung DDL (1987) J Mater Sci 22:4190. doi: https://doi.org/10.1007/BF01132008 CrossRefGoogle Scholar
  92. 92.
    Anderson SH, Chung DDL (1984) Carbon 22(3):253. doi: https://doi.org/10.1016/0008-6223(84)90169-6 CrossRefGoogle Scholar
  93. 93.
    Span R, Wagner WA (1996) J Phys Chem Ref Data 25:1509CrossRefGoogle Scholar
  94. 94.
    Gomez-Navarro C, Weitz RT, Bittner AM et al (2007) Nano Lett 7(11):3499. doi: https://doi.org/10.1021/nl072090c CrossRefGoogle Scholar
  95. 95.
    Gilge S, Han S, Wang M et al (2007) Nano Lett 7(11):3394. doi: https://doi.org/10.1021/nl0717715 CrossRefGoogle Scholar
  96. 96.
    Dikin DA (2007) Nat Lett 448:457. doi: https://doi.org/10.1038/nature06016 CrossRefGoogle Scholar
  97. 97.
    Jang BZ, Zhamu A, Song L (2006) US Patent Application No. 11/324,370 (4 Jan 06)Google Scholar
  98. 98.
    Song L, Guo J, Zhamu A et al (2006) US Patent Application No. 11/328,880 (11 Jan 06)Google Scholar
  99. 99.
    Sullivan MJ, Ladd DA (2006) US Patent 7,156,756 (2 Jan 2007) and No.7,025,696 (11 April 2006)Google Scholar
  100. 100.
    Jang BZ (2007) US Patent 186(7):474Google Scholar
  101. 101.
    Wang X, Zhi L, Mullen K (2008) Nano Lett 8(1):323. doi: https://doi.org/10.1021/nl072838r CrossRefGoogle Scholar
  102. 102.
    Watcharotone S, Dikin DA, Stankovich S et al (2007) Nano Lett 7(7):1888. doi: https://doi.org/10.1021/n1070477+S1530-6984(07)00477-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Engineering and Computer ScienceWright State UniversityDaytonUSA
  2. 2.Angstron Materials, LLCDaytonUSA

Personalised recommendations